
 A project sponsored by NSF 1

Developed by   2009-2012

Networking Level Laboratory

Mote-Mote Radio Communication

 A project sponsored by NSF 2

Developed by   2009-2012

Purpose/Objective:

The goal of this experiment is to understand various networking protocols a WSN can use; understand

the difference between a base station/gateway, relay node, and the end nodes. Students will also get

familiar with TinyOS interfaces and components that support radio communication. Students will learn

how to use message_t, the TinyOS message buffer, how to send a message buffer to the radio, and

what to do after receiving a message buffer from the radio.

Introduction

The nodes in a wireless sensor networks can be configured taking a mesh network

protocol, where every node is capable of sending and receiving data from other nodes;

or taking star network protocol, where all nodes communicate with each other

through a special node – cluster head. In general, the cluster head has more remaining

power. Another special node is the ‘base station’ or ‘gateway’, through which the

wireless communication is bridged to wired backbone network through a computer.

In order for nodes to communication with each other through radio/wireless

communication, TinyOS supports a common message buffer abstraction,

message_t, an abstract data type defined in tos/types/message.h file.

TinyOS also supports a number of interfaces to abstract the underlying

communications services and a number of components to provide/implement these interfaces. Within

the structure message_t, developers are recommended to access the data field only through

Packet, AMPacket and other interfaces, unless you REALLY know what you are doing:

typedef nx_struct message_t {

 nx_uint8_t header[sizeof(message_header_t)];

 nx_uint8_t data[TOSH_DATA_LENGTH];

 nx_uint8_t footer[sizeof(message_footer_t)];

 nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t

Basic Communication Interfaces

Let's look at some of the interfaces in the tos/interfaces directory to familiarize ourselves with

the communications system supported by TinyOS:

1. Packet - This interface provides commands for clearing a message's contents, getting its

payload length, and getting a pointer to its payload area. It provides the basic mechanism to

access members of the message_t structure.

2. Send - Provides the basic address-free message sending interface. This interface provides

commands for sending a message, or canceling a pending message send; an event to indicate

whether a message was sent successfully or not. It also provides functions for getting the

message's maximum payload and a pointer to a message's payload area.

3. Receive - Provides the basic message reception interface. This interface provides an event

for receiving messages; and commands for getting a message's payload length and a pointer to

a message's payload area.

http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc

 A project sponsored by NSF 3

Developed by   2009-2012

4. PacketAcknowledgements - Provides a mechanism for requesting acknowledgements

(ACK) on a per-packet basis.

5. RadioTimeStamping - Provides time stamping information for radio transmission and

reception.

Active Message Interfaces

TinyOS provides the Active Message (AM) layer to multiplex access to the radio so that the same radio

can be used by multiple services. The term "AM type" refers to the field used for multiplexing. It

functions similarly to that of the Ethernet frame type field, IP protocol field, and the UDP port in that it is

used also to multiplex access to a communication service. An AM packet includes a destination field,

"AM address", to address packets to particular motes. Interfaces to support the AM services, also

located in the tos/interfaces directory, include:

 AMPacket - Similar to Packet, it provides commands to access members of message_t

structure. This interface provides commands for getting a node's AM address, and type and

destination of an AM packet. Commands are also provided for setting an AM packet's destination

and type, and checking whether the destination is the local node.

 AMSend - Similar to Send, provides the basic Active Message sending interface. The key difference

between AMSend and Send is that AMSend takes a destination AM address in its Send command.

Components

A number of components (located in /tos/system directory) implement the basic communications

and active message (AM) interfaces. You need to get familiar with those interfaces and the components

implementing them:

1. AMReceiverC - Provides the following interfaces: Receive, Packet, and AMPacket.

2. AMSenderC - Provides AMSend, Packet, AMPacket, and PacketAcknowledgements

as ACKs.

3. AMSnooperC - Provides Receive, Packet, and AMPacket.

4. AMSnoopingReciverC - Provides Receive, Packet, and AMPacket.

Naming Wrappes

Since TinyOS supports multiple platforms, each of which might have their own implementation of the

radio drivers, an additional, platform-specific, naming wrapper called ActiveMessageC is used to

bridge these interfaces to their underlying, platform-specific implementations. ActiveMessageC

provides most of the communication interfaces presented above. ActiveMessageC for the micaz,

telosa, telosb, and intelmote2 are all implemented by CC2420ActiveMessageC.

Experiment Procedure:

In this experiment, we use BlinkToRadio applications (located in $TOSROOT/apps/). This simple

application increments a counter, displays the counter's three least significant bits on the three LEDs,

and sends a message with the counter value over the radio when a timer fires. Similar to the Blink

http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc
http://www.tinyos.net/tinyos-2.x/tos/interfaces/Packet.nc

 A project sponsored by NSF 4

Developed by   2009-2012

application, only one single timer and one counter will be used here. We will program two node with

this application. As long as they are both within range of each other, the LEDs on both will keep blinking.

If the LEDs on one (or both) of the nodes stops changing and holds steady, then that node is no longer

receiving any messages from the other node.

Step 1: Study the program files in the BlinkToRadio application folder:

1. Identify how message structure is defined.

2. Study the code for sending a message over the Radio:

1) Identify the interfaces (and components) that provide access to the radio and allow us to

manipulate the message_t type – AMSend;

2) Identify in the module block of the BlinkToRadioC.nc file the uses statements for

the interfaces needed to send a message;

3) Identify the declaration of any new variables and initialization code for sending a message;

4) Identify the program and calls to interfaces needed for sending a message;

5) Identify the implementation of any (non-intialization) events specified in the interfaces

needed for sending a message;

6) Identify in the implementation block of the application configuration file all the

components statement needed to provide the interfaces chosen in step 5);

7) Identify the ‘wire’ used by the application to the components providing the interfaces in the

implementation block of the application configuration file.

3. Study the code for Receiving a message over the Radio:

1) Identify the interfaces (and components) that provide access to the radio and allow us to

manipulate the message_t type – Receive;

2) Identify in the module block of the BlinkToRadioC.nc file the uses statements for

the interfaces needed to receive a message;

3) Identify any declaration of new variables and initialization code for receiving a message;

4) Identify any program and calls to interfaces needed for receiving a message;

5) Identify the implementation of any (non-intialization) events specified in the interfaces

needed for receiving a message;

6) Identify in the implementation block of the application configuration file all the

components statement needed to provide the interfaces chosen in step 5);

7) Identify the ‘wire’ used by the application to the components providing the interfaces in the

implementation block of the application configuration file.

Step 2: Program Mica nodes with BlinkToRadio application:

1. Attach the first Mica node securely onto the programming board (MIB520).
2. Change the terminal’s active directory to ‘/opt/tinyos-2.x/apps/tutorials/BlinkToRadio’. Use

command ‘make micaz install.1 mib510,/dev/ttyUSB0’ to load the BlinkToRadio onto the
first Mica node.

3. Detach the first Mica node, and attach the second node onto the programming board securely.
4. Use command ‘make micaz reinstall.2 mib510,/dev/ttyUSB0’ to load the BlinkToRadio

onto the second Mica node.
5. Detach the second Mica node from the programming board.

 A project sponsored by NSF 5

Developed by   2009-2012

Step 3: Test the BlinkToRadio application!

1. Put in the batteries for two Micaz nodes.
2. Turn the switch from ‘OFF’ to ‘ON’ on both nodes.
3. Wait and see the LEDs blinking!

Congratulations! You just figured out how to send and receive data on a Mica node via Radio

Communication successfully!

Exercise:

1. With every firing of the timer, three things will happen. What are they?

2. Go through the BlinkToRadioC.nc file, and answer following questions: (1) Why instead of using
ActiveMessageC component to access the message_t, the program uses AMSenderC? (2)
Why the radio is started using ActiveMessageC.SplitControl interface?

3. GO through the BlinkToRadio.h file, what does AM_BLINKTORADIO parameter indicate?

References:

TinyOS Tutorial Lesson 3: http://docs.tinyos.net/tinywiki/index.php/Mote-

mote_radio_communication

http://docs.tinyos.net/tinywiki/index.php/Mote-mote_radio_communication
http://docs.tinyos.net/tinywiki/index.php/Mote-mote_radio_communication

