
 A project sponsored by NSF 1

Developed by 2009-2012

Networking Level Laboratory

Mote-Computer Serial Communication

 A project sponsored by NSF 2

Developed by 2009-2012

Purpose/Objective:

The goal of this experiment is to learn how to communicate with a mote node from a PC. This will allow

you to collect data from a sensor network, send commands to mote nodes, and monitor the network

traffic. Students will also learn the Java-based infrastructure for communicating with motes, and display

the collected data as waveform on a graphical user interface (GUI).

Introduction

Being able to talk to a wireless node directly from a computer can greatly increase the application of the

wireless sensor network. It not only will allow the users to collect data from a sensor network, but also

allows them to control the WSN by sending commands to a particular node or a group of mote nodes. In

addition, various programs already exist on computer that monitor the performance of a network can

be adapted and used to monitor the wireless communication traffic and the performance of a WSN.

Most wireless sensor nodes provide serial port or similar interface so that they can talk to the serial

port in a computer directly. For example, the mica family can directly control a serial port: programming

boards basically connect the mote's serial port pins to the actual serial port on the board.

The basic abstraction for mote-PC communication is a packet source: a communication medium

over which an application can receive packets from and send packets to a mote node. Some examples of

packet sources are serial ports, TCP sockets, and the SerialForwarder tool. You can specify which packet

source to use by using an optional –comm parameter (e.g., $java net.tinyos.tools.Listen -

comm serial@/dev/ttyUSB0:micaz tells a Listen tool to use the serial port @/dev/ttyUSB0 (on a

Unix machine) at correct speed for a micaz mote.

Experiment Procedure:

First we need to test whether the communication between the serial ports of the computer and
Mica node functions correctly by using the apps/tests/TestSerial application. This application
sends a packet to the serial port every second, and when it receives a packet over the serial port it
displays the packet's sequence number on the LEDs.

Step 1: Program Mica node with TestSerial application:

1. Attach a Mica node securely onto the programming board (MIB520).
2. Change the terminal’s active directory to ‘/opt/tinyos-2.x/apps/tests/TestSerial’.
3. Use command ‘ls /dev’ to see the list of devices available to your system. For our serial

connection from MIB520, check the two ‘ttyUSBx’ ports. Use the port with lower number (e.g.,
ttyUSB1 as shown in the figure below) for programming, and the port with higher number (e.g.,
ttyUSB2) for data reading. Make sure that you gave the control of the MIB520 to the Virtual Box
by clicking on ‘Devices -> USB Devices -> MEMSIC MIB520CA [0500]’.

4. Use command ‘make micaz install.1 mib510,/dev/ttyUSB1’ to download the TestSerial.
5. Use command ‘java TestSerial –comm serial@/dev/ttyUSB2:micaz’ to run the corresponding

Java application that communicate with the node over the serial port.

Note: remember the ‘serial@/dev/ttyUSB2:micaz’ is identical with ‘serial@/dev/ttyUSB2:57600’, so
you can use command ‘java TestSerial –comm serial@/dev/ttyUSB2:micaz’ or ‘java TestSerial –
comm serial@/dev/ttyUSB2:57600 ’ to read from the serial ports.

 A project sponsored by NSF 3

Developed by 2009-2012

If you see output like the following and the mote LEDs blink, your communication between mote and
computer through serial port is successful!

Sending packet 1

Received packet sequence number 4

Sending packet 2

Received packet sequence number 5

Sending packet 3

Received packet sequence number 6

Sending packet 4

Received packet sequence number 7

Received packet sequence number 8

Sending packet 5

Received packet sequence number 9

Sending packet 6

Step 2: Use BaseStation application and net.tinyos.tools.Listen tool

BaseStation (in /opt/tinyos-2.x/apps) is an application that acts as a simple Active Message bridge

between the serial port and radio links. When it receives a packet from the serial port, it transmits the

packet on the radio; when it receives a packet over the radio, it transmits the packet to the serial port.

BaseStation toggles LED0 (GREEN) whenever it sends a packet to the radio; LED1(YELLOW) whenever

it sends a packet to the serial port; and LED2 (RED) whenever it drops a packet. BaseStation drops a

packet when one of the two receives packets faster than the other can send them (e.g., receiving micaZ

radio packets at 256kbps but sending serial packets at 57.6kbps). It can be installed on a Mica node that

 A project sponsored by NSF 4

Developed by 2009-2012

is attached to the computer via USB and will relay the data broadcasted from other nodes in the sensor

network to the computer for further processing.

The Java tool Listen is a basic packet sniffer. It prints out the binary contents of any packet it

hears. It creates a packet source and prints out every packet it hears.

1. Attach a Mica node securely onto the programming board (MIB520).

2. Change the terminal’s active directory to ‘/opt/tinyos-2.x/apps/BaseStation’.
3. Use command ‘make micaz install.1 mib510,/dev/ttyUSB1’ to download the BaseStation.

(Note: we are using ttyUSB1 because as shown in the figure before, that’s what MIB520 shows
in our system.)

4. Turn on the node with BlinkToRadio installed (from lab 3). You should see LEDs on the
BaseStation node blinking.

5. Use command ‘java net.tinyos.tools.Listen –comm serial@/dev/ttyUSB2:micaz’ to run the
corresponding Java Listen tool that print out the packets coming from mote nodes over the
serial port.

If you see printout similar to the following, then both your BaseStation and computer serial port

function successfully!

00 FF FF 00 00 04 22 06 00 02 00 01

00 FF FF 00 00 04 22 06 00 02 00 02

00 FF FF 00 00 04 22 06 00 02 00 03

00 FF FF 00 00 04 22 06 00 02 00 04

00 FF FF 00 00 04 22 06 00 02 00 05

00 FF FF 00 00 04 22 06 00 02 00 06

00 FF FF 00 00 04 22 06 00 02 00 07

00 FF FF 00 00 04 22 06 00 02 00 08

00 FF FF 00 00 04 22 06 00 02 00 09

00 FF FF 00 00 04 22 06 00 02 00 0A

00 FF FF 00 00 04 22 06 00 02 00 0B

The overall message format for the BlinkToRadioC application is (ignoring the first 00 byte):

 Destination address (2 bytes)

 Link source address (2 bytes)

 Message length (1 byte)

 Group ID (1 byte)

 Active Message handler type (1 byte)

 Payload (up to 28 bytes):

 source mote ID (2 bytes)

 sample counter (2 bytes)

So the data packet can be interpreted as follows:

dest addr link source addr msg len groupID handlerID source addr counter

ff ff 00 00 04 22 06 00 02 00 0B

 A project sponsored by NSF 5

Developed by 2009-2012

As you watch the packets scroll by, you should see the counter field increases as the BlinkToRadio app

increments its counter.

Step 3: Use SerialForwarder tool

Using the serial port directly allows only one PC program to interact with the mote and requires running

the application on a PC that is physically connected to the wireless node. The SerialForwarder tool is a

simple way to address both limitations.

The SerialForwarder (sf) program opens a packet source and lets many applications connect to it

over a TCP/IP stream in order to use that source. For example, you can run a SerialForwarder whose

packet source is the serial port. Then many applications can connect to the SerialForwarder, which acts

as a proxy, to read and write packets. Since applications connect to SerialForwarder over TCP/IP, they

can physically connect over the Internet.

Use command ‘java net.tinyos.sf.SerialForwarder -comm serial@/dev/ttyUSB2:micaz‘ to

connect to a micaz platform using SerialForwarder. You should see a window like the following pops up:

You can choose any port to listen to the data coming in from the serial port. For example, use command
‘java net.tinyos.sf.SerialForwarder –port 9003 -comm sf@localhost:9002’ will open a second
SerialForwarder as shown in the figure below, whose source is the first SerialForwarder.

 A project sponsored by NSF 6

Developed by 2009-2012

You can also see the client count of the first one has increased to one. It demonstrates that in the
message support libraries you can use a variety of packet sources.

Close the second SerialForwarder (the one listening on port 9003).

Step 4: Your turn!

Now it’s your turn to test your mastery of the WSN hardware platform and TinyOS software platform.

Modify the BlinkToRadio application so that instead of sending the three least significant bits of the
counter to radio, send the packet directly to the serial port.

Exercise Questions:

1. What is the packet source used for our MicaZ platform? What parameter you use to specify such a
packet source?

2. What different interfaces to use in order to send message to Radio versus to Serial Port directly?

 A project sponsored by NSF 7

Developed by 2009-2012

3. Why SerialForwarder (sf.SerialForwarder) is preferred than directly using the serial port?

4. What Java tool you use to display received packets on PC?

References:

[1] TinyOS Tutorial Lesson 4: http://docs.tinyos.net/tinywiki/index.php/Mote-
PC_serial_communication_and_SerialForwarder

Tips:

1) Use ‘Snipping Tool’ in the windows system to create snap shots of the lab results in the virtual

box environment.

2) Debugging commands that are useful:

Use ‘Dmesg | tail’ to give you a list of device related actions the OS did. Use this to check the

USB device you just connected to the computer.

http://docs.tinyos.net/tinywiki/index.php/Mote-PC_serial_communication_and_SerialForwarder
http://docs.tinyos.net/tinywiki/index.php/Mote-PC_serial_communication_and_SerialForwarder

