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Abstract

Skin cancer has been the most common and represents 50% of all new cancers de-

tected each year. If detected at an early stage, simple and economic treatment can

cure it mostly. Accurate skin lesion segmentation is critical in automated early skin

cancer detection and diagnosis systems. In this paper, we propose an Evolution

Strategies (ES) based segmentation algorithm to identify the lesion area within an

ellipse. The method is applied to 51 XLM and 60 TLM images which have manual

segmentation from dermatologists as TRUTH. Unlike most segmentation methods,

the proposed ES-based segmentation method can detect the lesion automatically

without setting parameters and initial values by trial and error. The method is also

compared to algorithms developed in [13,31]. The ES-based method gives compara-

ble accuracy for easily segmented images and much better results for images with

either higher noise level, less prominent edge information, or very small size lesions.
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1 Introduction

Early detection of cancerous skin lesion has been agreed to be very im-

portant due to the wide spread of skin cancer as well as the economic and

successful treatment if detected early. For instance, malignant melanomas,

the deadliest form of all skin cancers, has cure rate of higher than 95% when

detected at an early stage [1]. Segmentation is essential in automatic skin

cancer detection and diagnosis systems. Zouridakis, et al. [13,31] developed

an automatic system to determine the malignancy based on the size differ-

ence in skin lesion images from two imaging modalities: Cross-polarization

Epiluminescence Microscopy (XLM) and Transillumination Epiluminescence

Microscopy (TLM). Fig.(1) shows the Nevoscope device that can capture both

XLM and TLM images and its cross-sectional view. Fig. (2) and Fig. (3) show

two pairs image of XLM and TLM from a malignant and a benign skin lesion

respectively.

(a) Nevoscope Device (b)Nevoscope schematic diagram

Fig. 1. Multiple Image Acquisition Modalities by Nevoscope
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(a)XLM image (b)TLM image

Fig. 2. XLM and TLM images from a malignant skin lesion.

(a)XLM image (b)TLM image

Fig. 3. XLM and TLM images from a benign skin lesion.

The four segmentation methods used to differentiate the lesion area from

the background are sigmoid-based thresholding, principle component trans-

form (PCT), PCT based sigmoid thresholding, and fuzzy c-mean clustering.

A scoring system then selects the best segmentation result. It has a satis-

factory performance with pixel-level error rate less than 15% for 80% of im-

ages compared to manual segmentation by dermatologists. However, for the

remaining 20% lesion images which have high background noise, weak edge

information, or really small lesion size, all four segmentation methods cannot

segment the lesion successfully, with error rate higher than 40%. In addition,

all segmentation methods performance also heavily depend on manually se-

lected parameters and initial values.

In this paper, we presents a skin lesion segmentation methods based on

Evolution Strategies (ES). Like other evolution computation algorithms, such

as genetic algorithm, ES algorithm finds the optimum configurations by select-
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ing the best candidates from the population in each generation and producing

the next generation population by combination and mutation operations. We

choose ES algorithm because it is designed for real number function opti-

mization, and will not be affected by uncertainties introduced by quantization

errors such as the binary coding for genetic algorithms. In addition, we mod-

ified ES algorithm so that it can seek global optimum and get out of the

local optimum automatically. To apply the ES algorithm to skin lesion image

segmentation, we formulated the segmentation problem as a search problem

similar to [30] and designed a special objective function.

Because of the inherent properties of ES algorithm, our ES-based segmentation

algorithm has three distinct advantages: (1)its performance does not depend

on initialization or threshold values (2)its performance is robust with respect

to artifacts and noise; (3)it is based on the regional statistical property of the

image. Because of these properties, images fed into the ES-based segmentation

algorithm do not need to go through the full pre-processing steps mentioned

above. In specific, ES-based segmentation method does not need hair removal

procedure. In addition, ES-based method does not require manually selected

threshold and is robust to the initial values. The method is validated by ex-

periments on the same data set as used in [13,31]. The experiments show ES

based algorithm has a better performance even compared with the best seg-

mentation results selected from four segmentation methods.

The rest of this paper is organized as follows. In the next section, we review

some research related to skin lesion image segmentation. After briefly review

the general structure of ES algorithm, we proceed to present how we formulate

the skin lesion image segmentation as a search problem in Section 3. In Section

4, we present our experiments design and results for the ES-based method.

Finally, we present some observations and discussions as well as future direc-
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tions for automated skin lesion image segmentation and skin cancer detection

to conclude the paper in Section 5.

2 Relevant works

Automated systems for detecting melanoma use one imaging modality (such

as dermoscopy), mathematical models, and computer algorithms to predict if a

skin lesion is melanoma [15]. The general steps of such a system include imag-

ing pre-processing, segmentation, feature extraction and calculation, and clas-

sification. The main task of segmentation is to differentiate the lesion from the

background. Thresholding [2,19,26,18] and region growing are two simple and

most widely used algorithms in the literature. For images with strong contrast,

these two techniques usually give good results and the implementation is sim-

ple. Clustering algorithms are more robust than simple thresholding and region

growing techniques. Orientation sensitive Fuzzy c-mean [15], Density Based

Spatial Clustering of Application with Noise(DBSCAN) [5], and JSEG [6] are

examples of applying clustering algorithms in lesion segmentation. Melli, et al.

[21] compared four clustering algorithms for lesion identification: median cut,

k-mean, Fuzzy c-mean, and mean shift. Their results showed that mean shift

achieve the best performance in sensitivity and specificity. Active contours or

snakes have also been applied to skin lesion segmentation, including geodesic

active contours [7,8] and gradient vector flow(GVF) [14]. Both algorithms are

edge based schemes. They are sensitive to noisy points and initial conditions,

and may fail to detect weaker edge. Content based Markov Random Field

(MRF) [10] has also been applied to skin lesion segmentation.

Zouridakis, et al [13,31] developed an automatic skin lesion malignance detec-

tion system based on size difference of two image modalities [23]: XLM and
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TLM. The XLM imaging modality captures only surface pigmentation [4].

The TLM imaging modality can visualize both surface pigmentation and the

increased blood volume and vasculature activity around a lesion if present

[11,12,22]. Based on angiogenesis, more vascular activity can be observed

for cancerous lesions, resulting in bigger lesion area captured by the TLM

modality than by the XLM modality. The accuracy of the segmentation de-

termines accuracy of lesion size, thus determines the overall performance of

the automatic skin cancer detection system. The best segmentation result is

selected from four segmentation methods employed by a scoring system: sig-

moid thresholding, principal component transforms (PCT), PCT based sig-

moid thresholding, and fuzzy c-mean clustering. The scoring system looks at

the differences between segmentation results and the edge strength and selects

the one that has majority vote and the strongest edge.

However, these four segmentation methods all have their own limitations, espe-

cially when dealing with skin lesion images. The sigmoid thresholding method

requires that the histogram of the red channel follows the Gaussians distribu-

tion. It fails when this condition cannot be satisfied. The principle component

transformation (PCT) method compares the variance between the lesion and

its background in the LAB color space. However, it does not consider any

regional statistical property, and in some cases it can not generate enough

contrast between the lesion and the background. The PCT based sigmoid

thresholding method suffers from the same problem as PCT. Moreover, the

threshold determined by this method is easily influenced by artifacts. The

performance of fuzzy c-mean clustering based method is very poor on images

with very small lesions. Even though a scoring system based on majority vote

mechanism is designed to overcome the limitations of different segmentation

methods, for 20% of all lesion images we used, the error rate is still over 40%.
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Evolution Strategies (ES) is an evolutionary computation algorithm that de-

signed for real number function optimization and has been applied successfully

to different application areas [24,29,30]. Genetic Algorithm(GA), another evo-

lutionary computation technique, is the most popular and has already been

applied to image segmentation [3,27] in general and medical image segmen-

tation [16,20] in specific. The major difference is that ES gene evolves in the

real number domain, which avoids information loss due to the binary coding

representation of GA. Yuan et al. [30] applied ES successfully to multiple fea-

ture identification in natural and artificial images. It has also been applied to

image registration [29].

To apply the ES algorithm to skin lesion image segmentation, we formulated

the segmentation problem as a search problem similar to [30]. The lesion area

is segmented by an ellipsoid, whose parameters are optimized by ES algorithm

with respect to the defined objective function. The main reason we chose to

use an elliptic template for segmentation is because it can be fully defined by

five parameters. This makes it easy to implement an ellipsoid region based

objective function.

3 Materials and Methods

3.1 Input dataset

We use the same dataset used in [31]. It consists of 68 pairs XLM and

TLM images captured by the same Nevoscope device[4,12] under lighting con-

ditions. An Olympus C2500 (Olympus, Japan) digital camera was attached to

the Nevoscope to capture the digitized images, which had a spatial resolution

of 1712× 1368 pixels. In addition, the nevoscope used an optical lens (Nikon,
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Japan) to achieve a standard 5X magnification. We validated our ES-based

segmentation algorithm on 51 XLM images 60 TLM images using manual seg-

mentation by dermatologist as TRUTH. The remaining lesion images do not

show pigmentation and could not even be segmented by a dermatologist[13].

3.2 Preprocessing

Each image undergoes the same preprocessing procedures as detailed in

[13,31] including masking, color space conversion, and resizing. As shown in

Fig. (2) and Fig. (3), the raw XLM and TLM images acquired by Nevoscope

usually have a clear mark made by the doctors to identify the area they would

like the image to be taken. In addition, there is a bright ring around the lesion

due to the physical mechanism of Nevoscope. To eliminate the ring artifact, a

circular ring is determined using the Hough transform [25] and the background

external to the ring is masked. Then RGB image is transformed to a grayscale

image. We do not perform preprocessing steps such as background correction

and hair removal since the ES-based segmentation method is robust to such

artifacts. The final step of the preprocessing is resizing the image to convert

the rectangular image to square image and to reduce computational cost. We

use the bicubic interpolation to maintain the aspect ratio. A lowpass filter

of size 11 x 11 is also applied to prevent spatial aliasing. The output of the

preprocessing steps are gray scale lesion images of size 256 x 256.

3.3 Evolution Strategies

Evolution Strategies (ES) is a random search based optimization technique.

Various applications have shown that when problem are formulated properly,
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ES can give good results with reasonable time complexity. We chose ES as

our optimization methods because of its two properties. First, ES algorithm

converge to global optimum instead of local optimum. Second, ES is formu-

lated for optimization of real number functions. The basic elements for using

ES include:

(1) A population (more than one) of candidate solutions (i.e., organisms);

(2) A measure based on which each member of the population (or candidate

solution) will be evaluated, denoted as objective/fitness function;

(3) A “SELECTION” operator that selects the best candidate solutions

from population pool based on their fitness value;

(4) A “MUTATION” operator that makes random changes to a member of

the population (corresponding to asexual reproduction in biology evolution);

(5) A “RECOMBINATION” operator that generates a new organism (or

individual solution) by combining “genetic material” from random selected

members of the population.

Each organism can be represented by their object variables (which defines the

dimension of the organism), and control variables (which defines the standard

deviation and auto-correlation of the object variables). Fig.4(a) illustrates two

organisms and their vector representations over a hill-climbing problem. The

organism 1 and 2 shows the current position in the search space for two organ-

isms in the current generation and their possible directions and step sizes for

next generation. Each object variable will evolve from generation to generation

using mutation and recombination operations. For example, the length of the

major axis of the ellipsoid segmentation structure as detailed in section 3.5 is

one such object variable. The control variables are randomly generated based

on Gaussian distribution and the default step size. They determine the ran-

domness of the object variables in the next generation. At the beginning, the
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default step size is 1. It decreases during the evolution if the improvement of

the fitness values between generations becomes very small while the organisms

approach the optimum.

If the optimization problem is defined on two object variables, correspond-

ing to a 2D search space, two examples of the organisms < 10.0, 8.0; 4.0, 2.0; 0.0 >

and < 25.0, 20.0; 2.0, 4.0; 90.0 > in the search space are illustrated in Fig.4(a)

- the former in the lower left and the latter in the upper right. The axes inter-

sect at the mean and the height/width represent two standard deviations in

the appropriate directions. Both organisms are evolving towards the optimum

value around < 20.0, 10.0 >. Note that there could be other organisms within

the current generation which are not shown here.

(a)ES Organisms illustration (b)Flowchart of ES

Fig. 4. ES Overview

Fig.4(b) shows the evolution of candidate solutions (i.e., organisms) in one

generation of ES. The parent gene pool stores the candidate solutions (µ)

selected from population pool. These genes are used as parents to generate

candidate solutions or organisms of the next generation. A total of λ organisms

(candidate solutions) are generated by undergoing recombination and muta-

tion operations. They are added to the population pool, resulting in µ + λ
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organisms for the next generation. The fitness of a newly generated offspring

is evaluated using the user defined objective function. Only organisms with

good fitness values will be used as parents for the next generation. When using

(µ+λ) selection scheme, µ organisms will be selected from all population pool

based on their fitness value to be the parent of the next generation. When us-

ing (µ, λ) selection scheme, µ organisms will be selected from the λ offsprings

as the parent. This finishes the evolution of one generation, as summarized

in Fig.4(b). From one generation to the next, the candidate solutions (organ-

isms) evolve to give better and better fitness values. The evolution stops when

the fitness values does not improve much (the difference between the fitness

value less than an arbitrarily small value ε defined by the user: ε
.
= 10−6) from

two consecutive generations for 5 times. Another termination criteria based

on user defined generation number is used when such convergence condition is

difficult to reach. The choice of µ and λ will also affect the performance and

computational complexity of the evolutionary strategy [24,16].

3.4 Principles of automatic skin lesion segmentation by evolutionary compu-

tation

The generic framework of ES-based automatic skin lesion segmentation is

shown in Fig.5. The objective is to use ES to divide the whole image into two

uniform areas with minimum variation in both regions that conform to the

consistency verification rules. The uniformity can be the homogeneity measure

of pixel intensity, reflective illuminance, or texture.

Evolutionary computation algorithms, such as Evolution Strategies and Ge-

netic Algorithm, are direct, probabilistic search and optimization procedures

rooted in organic evolution. The efficiency (or computational cost) and ro-

11



Fig. 5. Framework for the segmentation procedure

bustness(or reliability under varying conditions) of Evolution Strategies to

deal with real number numeric optimization problems have been proved in

many experiments [24]. We formulated the skin lesion segmentation problem

as searching in the image I(x,y) for the optimum boundary that separates the

image into two homogeneous areas (i.e., largest area with lowest variation).

Then the consistency verification is applied if user has a priori knowledge

about the characteristic of the interesting features in the image. Only quali-

fied results will survive the selection. When the searching process terminated

either by fullfilling some convergence criteria or timeout, the best candidate

among these qualified solution will be the output optimum.

As shown in Fig.5, after preprocessing, the lesion images are fed into the ES

to evaluate the region-based uniformity. Then region-based consistency verifi-

cation rules are applied until the lesion is segmented.

3.5 Skin lesion segmentation problem representation in Evolution Strategies

At the heart of this approach (and a chief contribution of this paper) is

transforming the image segmentation problem to a numerical optimization

problem and using ellipsoid as the search structure to represent the solution of

the optimization problem. The object variables of an ES individual are used to
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represent an ellipse corresponding to a candidate boundary that encircles the

largest homogeneous region. The uniformity (as measured by to-be-described

metrics) of the region both within and outside the ellipsoid structure is the

objective value for each candidate.

The ellipsoid search structure is defined by its center, major and minor axis

and orientation, (X,Y, a, b, θ). Each organism(candidate solution) in ES can

be represented as (X,Y, a, b, θ; δ1, δ2, . . . , δ5; γ1, γ2, . . . , γ10), where the object

variables are defined as the ellipsoid search structure:

(X,Y ): the center of an ellipse;

(a, b): the minor and major axis radii of an ellipse;

θ: the rotation angle of an ellipse.

The control variables,
−→
δ and −→γ , have the standard interpretation of defining

the hyper-ellipsoid that proscribes the mutation operator.

Although it looks like the ellipse search structure, the 2-dimensional ES rep-

resentation as shown in Fig.4(a) has a different meaning. The 2-dimensional

ES representation shows the current position in the search space, the pos-

sible direction and step size for next move. On the other hand, the ellipse

search structure is defined on 5-dimensions and therefore it involves a hyper-

sphere representation in search space and is difficult to visualize. Furthermore,

for image segmentation, besides ellipsoid, different shapes of polygon such as

rectangle can be used as search structure.

3.6 Objective function

The objective function returns the fitness of an ES organism. We use a

region-based objective function as defined in Equation (1) according to the
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skin lesion property: the lesion and the background skin have different region

statistics. It favors an ellipse that divides the image into two homogenous

areas with minimum variation in both regions.

F (X,Y, a, b, θ) =
∫

ω
|I(x, y)− c1|2dxdy

+
∫

Ω\ω̄
|I(x, y)− c2|2dxdy (1)

where I(x, y) is the intensity value of the coordinate (x, y); ω is the area

enclosed by the ellipse defined by (X,Y, a, b, θ); Ω is the area of the pixels

whose intensity value is not zero; c1 and c2 represent the average intensity

value of the pixels inside and outside ω respectively. The area enclosed by the

ellipse is calculated as the number of pixels falling inside the ellipse.

To recap, the object variables of an ES organism define the search structure -

an ellipse in the search space. In our system, the homogeneity is defined as the

difference between the pixel intensity and the average intensity value within

the region. The objective function emphasizes the minimum variance at both

the region enclosed within the ellipse as well as the region outside the ellipse.

3.7 Region based consistency verification

Besides the internal consistency check that determines the termination con-

dition of the ES optimization process and ensure the intensity variance of

both regions within and outside the identified ellipse is minimum according to

the objective function, we designed region based consistency verification rules

based on a priori knowledge about the skin lesion characteristics.

The consistency verification rule is based on the fact that the lesion area al-

ways has lower intensity and the goal is to segment the lesion with minimum

background enclosed. We examine the smoothed histogram of the segmented

14



area after applying the ES algorithm. If the first peak (represents the lesion

area) is lower than the maximum peak, it means the lesion area is not the

dominant feature inside the ellipse. In this case, we apply ES algorithm again.

Otherwise, the first peak is the maximum peak, i.e., the lesion is the dominant

feature inside the segmented region, and we output it as the final segmentation

result.

Based on our experiments, for most XLM images, ES needs to be applied once.

That is, the segmented result can pass the consistency check the first time. For

most TLM images, ES needs to be applied twice. For the few images whose

lesions are very small, ES needs to be applied one more time.

3.8 Computational complexity analysis

We analyze the computational complexity for the ES-based segmentation

procedures as shown in Fig. 5. The computational time complexity of the pre-

processing steps and the consistency verification step is O(N2), where N2 is

the image size.

Theoretical analysis of the computational time complexity of different evolu-

tionary algorithms, including evolution strategies, is still ongoing research [28].

The time consumed for ES varied depends on how many generations it takes

to converge. If it takes M generations to converge, and µ+λ organism for each

generation, the computational complexity is O(M × (µ + λ)). As long as M

is much less than N2, the ES-based method is more efficient than pixel-based

or region-based methods.

We used Pentium(R) 4 CPU 2.26GHz, 1.50 GB of RAM to run the algorithm.

The execution time for XLM and TLM images to go through the ES-based

segmentation procedures as shown in Fig. 5 is about 15 minutes for those im-
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ages that pass the consistency verification the first time. The execution time

for those images that need to go through ES algorithm two or more times is

about 20 minutes. The pre-processing steps and the randomness of the initial

value generated for the first time run of the ES contributes to overhead of the

computational time. The computational complexity of the four algorithms in

[13,31] is O(N2). Running on the same computer setup, their run time are all

within 30 seconds (CPU time).

4 Experiments and Results

4.1 Experiments Setup

For our experiment, we adapted CMAES [9,17] to perform ES optimiza-

tion. Our experiment results show that ES guarantees similar performance for

different initial values for object and control variables. This demonstrates the

robustness of ES algorithm with respect to the initialization. To further im-

prove computational efficiency, we specify the constraints in CMAES to reduce

the search area: {(X,Y, a, b, θ)|(X,Y ) ⊆ {1/9×N, 8/9×N}, (a, b) ⊆ {5, 120}},
where N is the size of the image. These constraints are designed based on the

following properties of skin lesion images: (1) the lesion area should not ex-

ceed the scope of the image; and (2) the lesion area should occupy significant

amount of areas near the center of the image. The initial values for object

variable of ES organism are generated randomly within the specified search

area according to uniform distribution.

We tested (µ + λ) selection and (µ,λ) selection with same population size

setting - 5 for the parent population and 30 for the descendant population -

on 10 images. For the skin lesion segmentation problem, similar performance
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and the computational time are achieved by both selection scheme. We de-

cided to use (µ,λ) for all the images. The recombination operators on object

variables and control variables are discrete recombination on object variables

and panmictic intermediate recombination of control variables, respectively.

A convergence criterion is tested after each 10 generations and a maximal

computation time of 10 seconds (CPU time) is set to terminate the search in

case the convergence criterion is not met.

To quantitatively evaluate the performance of the ES-based segmentation

method and compare the results with the previous works, we adopted the error

ratio used in [13,31]. An error rate E is defined as the normalized agreement

of segmentation results and the reference. Let c denote the border of the

segmentation result and cr is the reference border. Notation A(c) gives the set

of pixels enclosed by border c. A(c)
⊕A(cr) defines the set of pixels belong to

A(c) or A(cr) but not in both (which means the exclusive or operation of two

sets). The error rate is formulated as follows:

E =
|A(c)

⊕A(cr)|
|A(c)|+ |A(cr)| (2)

where |A| denotes the cardinality of the set A.

The error rate will be 1 if A(c) and A(cr) enclose totally different areas. It

will be 0 if A(c) and A(cr) enclose the same areas. The proposed ES-based

algorithm will be compared with the algorithms developed in [13,31] using the

same data set.
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4.2 Experiments Results

The ES-based segmentation method is applied to 51 XLM images and 60

TLM images which have manually segmentation by certified dermatologist.

These manual segmentation are treated as true values, and we validate our

ES based segmentation algorithm by comparing its results with the manually

segmented results as well as four segmentation methods previously developed

in [13,31]: I. Sigmoid; II. PCT; III. PCT plus Sigmoid; and IV. Fuzzy c-mean.

Compared with these methods, the experiment results show that ES-based

method performs better and is more robust when applying to images with

higher noise level, very small lesion, or weak edge, which we defined as “diffi-

cult” images.

(a) (b) (c)

Fig. 6. Comparing ES (column (a)), dermatologist (column (b)) , and [13]’s results

(column (c)).

Results shown in Fig.6 demonstrate much better segmentation results from
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ES-based algorithm for Lesion 38(TLM), 35(TLM), and 13(XLM). In Fig.6,

each row shows the segmentation results of one “difficult” XLM or TLM im-

age: the first column shows the ES-based method results; the middle column

shows manual segmentation by a certified dermatologist; and the last column

shows the best segmentation results selected based on the scoring system de-

veloped in [13,31]. The edge of the lesion 38 is very vague; the lesion 30 is

very small; and lesion 13 is lesion clusters with holes in between. With com-

bination of the objective function in Eq.(1) and the consistency verification

criteria, ES-based method is not affected by the edge strength (lesion 38),

size of the lesion(lesion 35), and holes in the middle of the lesion (lesion 13),

as compared with other segmentation methods. Table 1 shows the error rate

comparison of these “difficult” images between the ES-based method and the

best segmentation result from the four segmentation methods selected by the

scoring system developed in [13,31]. From Table 1, we can see the error reduc-

tion from the ES-based method and the best result of the “difficult” images

ranges from 45.77% to 84.71%, which is significant improvement.

Algorithm ES Scoring System Error Reduction %

TLM ]38 12.12% 22.35% 45.77%

TLM ]72 6.48% 42.38% 84.71%

XLM ]13 17.6% 45.05% 60.93%

Average 12.07% 36.59% 67.01%

Table 1

Error ratio for images in Fig.6.

Table 2 shows the average error rate comparison the ES-based method
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Table 2

Average error ratio for XLM and TLM images of the four algorithms and ES.

Algorithm I II III IV ES

XLM N/A 17.96% 15.58% 13.57% 14.82%

(10.8%) (13.0%) (10.0%) (7.0%)

TLM 23.09% N/A 19.22% 16.57% 16.71%

(22.1%) (18.0%) (18.3%) (12.3%)

and the the four segmentation methods for other XLM and TLM skin lesion

images.

As shown in Table 2, for most of the 110 skin lesion images, where the

edge is well defined and the artifact and noise level are low, ES-based method

achieves compatible result by running ES one time. The standard deviations

are much lower than those from the other four segmentation methods because

of its robustness to high noise and artifacts. It is worth pointing out that for

the four segmentation methods (I - IV), besides the pre-processing steps de-

scribed in Section 3.2 such as masking, color space conversion, and resizing,

other steps such as median filtering, background correction, and hair removal

have been used before the four segmentation methods are used [13,31]. In spe-

Fig. 7. ES-based algorithm able to segment the lesion area even with a lot of hair.
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cific, Fig.7 shows one instance where too much hair prevents any of the four

segmentation methods detect the lesion region correctly even after the hair

removal preprocessing.

However, the performance of ES is limited by the search structure we selected,

i.e., ellipsoid. As shown in Fig.8, though ES-based method correctly identified

and segmented the lesion area, the arbitrary shape of the manual segmenta-

tion by the dermatologists and the definition of pixel based error ratio (Eq.2)

dampened the ES performance number.

(a) (b) (c)

Fig. 8. Comparing ES(col. (a)), dermatologist(col. (b)) , and [13]’s results(col. (c)).

5 Conclusion and discussion

In this paper, we present a generic framework for automatic skin lesion

segmentation based on Evolution Strategies. We transform the skin lesion seg-
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mentation problem into a numerical optimization problem and use ES with an

ellipsoid search structure. We designed objective function that favors the en-

closure that separates the whole image into two homogeneous regions. Based

on the characteristics of skin lesion images, histogram based consistency veri-

fication rule is used to automatically refine the segmentation results.

Experiments were done for 60 TLM and 51 XLM images with TRUE value

from one certified dermotologist. Results demonstrate that ES-based algo-

rithm is more robust to artifacts and noise. It does not require any user input

parameters, such as threshold, and its performance does not depends on initial

values. However, due to the ellipsoid search structure, it does not give detailed

segmentation results. On the other hand, the proposed ES-based segmentation

framework is flexible to adopt other objective functions and search structures.

In addition, texture information can be added to improve the computational

efficiency.

In the future, we plan to incorporate some edge and texture information to

further improve the segmentation results and computational efficiency.
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