
System Architecture Directions for 
Networked Sensors 

Hrishikesh Thaker



Outline

l Introduction
l Network Sensor Characteristics
l Hardware Design 
l Tiny OS
l Effectiveness
l Conclusion
l References



Introduction
l Technological progress
l Missing Elements       

1. Overall system architecture
2. Methodology for Systematic advance

l Key Requirements
1. Develop a small device
2. Design a Tiny event-driven OS that support

efficient modularity and concurrency-intensive
operation.



Network Sensor Characteristics

• Small Physical size
• Low Power consumption (Fraction of Watt).
• Concurrency intensive operation.
• Limited Physical Parallelism and Controller 

Hierarchy
• Diversity in design and Usage
• Robust operation



Schematic Diagram



TinyOS Introduction
• TinyOS is an embedded operating system, 

written in NesC programming language to 
operate within the severe memory 
constraints inherent in sensor networks

• Small physical size, modest active power 
load, tiny inactive load hardware design

• Designed to support concurrency intensive 
operations required by network sensors to 
achieve efficient modularity and robustness

• It combines sensing, communication, and 
computation into single architecture 



System Challenge

• Concurrency intensive operations
• Unsynchronized, Multiple , high data flow 
• Low memory and low power consumption

• Bit by Bit interaction with radio 
• Small physical size – ( no multiple controllers, 

direct interface with micro controller)
• Modularity – application specific



Tiny OS Overview

• Event driven model.--- uses CPU efficiently
• Two level scheduling (Event and Tasks)
• Fine-grain multithreading
• Static memory allocation
• System composed of state machines
• Each state machine is a TinyOS “component”
• Provides efficient battery usage



Tiny OS Component Design

• Every component has
• Frame 
• Tasks 
• Command Handler 

Interface
• Event Handler Interface

• Frame: static storage 
model

• Command and events are 
function calls 

Messaging Component

Internal StateInternal Tasks

Commands Events



TOS Component
//AM.comp//

AM TOS_MODULE;
//ACCEPTS{
char AM_SEND_MSG(char addr, char type, 

char* data);
void AM_POWER(char mode);
char AM_INIT();

};
//SIGNALS{
char AM_MSG_REC(char type,         char* 

data);
char AM_MSG_SEND_DONE(char success);

};
//HANDLES{
char AM_TX_PACKET_DONE(char success);
char AM_RX_PACKET_DONE(char* packet);

};
//USES{
char AM_SUB_TX_PACKET(char* data);
void AM_SUB_POWER(char mode);
char AM_SUB_INIT();

};

Messaging Component
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• Two level scheduling structure (events 
and tasks)

• Scheduler is simple FIFO
• Bound on the number of pending 

tasks.
• Tasks cannot preempt other tasks.
• Scheduler is power aware

• Puts processor into Sleep mode when 
queue is empty.

TOS Component



TOS Component Types
l Hardware Abstractions
l RFM radio component

l Synthetic Hardware
l Radio Byte component

l High Level Software
l Messaging Module
l Performs control, routing and all data 

transformations
l Filling  in a packet buffer and dispatches 

received messages



Simple Configuration
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Evaluation
1. Small Physical Size
• Entire application takes 226 bytes of data, 

under 50% of 512 bytes available



Efficient Modularity
l Events and Commands propagates quickly
l Total propagation delay up the 5 layer radio 

communication stack is about 40 micro-seconds

Timing diagram of event propagation
Slide courtesy Jason Hill et al



• When active, power consumption of LED and Radio 
reception are about equal to processor

• Processor, radio, sensors at peak load consumes 
19.5mA at 3.0 V or about 60 mW
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Work and Energy breakdown

l Successfully demonstrated a system with 
multiple flows of data running through a 
single microcontroller

Components
Packet reception 
work breakdown CPU Utilization Energy (nj/Bit)

AM 0.05% 0.20% 0.33
Packet 1.12% 0.51% 7.58
Radio handler 26.87% 12.16% 182.38
Radio decode thread 5.48% 2.48% 37.2
RFM 66.48% 30.08% 451.17
Radio Reception - - 1350
Idle - 54.75% -
Total 100.00% 100.00% 2028.66

Slide courtesy Jason Hill et al



Conclusions
• Small memory size
• Power efficient

• Put micro controller and radio to sleep
• Efficient modularity
• Concurrency-intensive operations

• Event-driven architecture
• Efficient interrupts/events handling 

• Real-time 
• Non-preemptable FIFO task scheduling
• No real-time guarantees or overload protection
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