
System Architecture Directions for
Networked Sensors

Hrishikesh Thaker

Outline

l Introduction
l Network Sensor Characteristics
l Hardware Design
l Tiny OS
l Effectiveness
l Conclusion
l References

Introduction
l Technological progress
l Missing Elements

1. Overall system architecture
2. Methodology for Systematic advance

l Key Requirements
1. Develop a small device
2. Design a Tiny event-driven OS that support

efficient modularity and concurrency-intensive
operation.

Network Sensor Characteristics

• Small Physical size
• Low Power consumption (Fraction of Watt).
• Concurrency intensive operation.
• Limited Physical Parallelism and Controller

Hierarchy
• Diversity in design and Usage
• Robust operation

Schematic Diagram

TinyOS Introduction
• TinyOS is an embedded operating system,

written in NesC programming language to
operate within the severe memory
constraints inherent in sensor networks

• Small physical size, modest active power
load, tiny inactive load hardware design

• Designed to support concurrency intensive
operations required by network sensors to
achieve efficient modularity and robustness

• It combines sensing, communication, and
computation into single architecture

System Challenge

• Concurrency intensive operations
• Unsynchronized, Multiple , high data flow
• Low memory and low power consumption

• Bit by Bit interaction with radio
• Small physical size – (no multiple controllers,

direct interface with micro controller)
• Modularity – application specific

Tiny OS Overview

• Event driven model.--- uses CPU efficiently
• Two level scheduling (Event and Tasks)
• Fine-grain multithreading
• Static memory allocation
• System composed of state machines
• Each state machine is a TinyOS “component”
• Provides efficient battery usage

Tiny OS Component Design

• Every component has
• Frame
• Tasks
• Command Handler

Interface
• Event Handler Interface

• Frame: static storage
model

• Command and events are
function calls

Messaging Component

Internal StateInternal Tasks

Commands Events

TOS Component
//AM.comp//

AM TOS_MODULE;
//ACCEPTS{
char AM_SEND_MSG(char addr, char type,

char* data);
void AM_POWER(char mode);
char AM_INIT();

};
//SIGNALS{
char AM_MSG_REC(char type, char*

data);
char AM_MSG_SEND_DONE(char success);

};
//HANDLES{
char AM_TX_PACKET_DONE(char success);
char AM_RX_PACKET_DONE(char* packet);

};
//USES{
char AM_SUB_TX_PACKET(char* data);
void AM_SUB_POWER(char mode);
char AM_SUB_INIT();

};

Messaging Component

AM
_S

UB
_I

NI
T

AM
_S

UB
_P

OW
ER

AM
_S

UB
_T

X_
PA

CK
ET

AM
_T

X_
PA

CK
ET

_D
ON

E
AM
_R

X_
PA

CK
ET

_D
ON

E

Internal State

AM
_I

NI
T

AM
_P

OW
ER

AM
_M

SG
_R

EC

Internal Tasks

AM
_S

EN
D_

MS
G

AM
_M

SG
_S

EN
D_
DO

NE

• Two level scheduling structure (events
and tasks)

• Scheduler is simple FIFO
• Bound on the number of pending

tasks.
• Tasks cannot preempt other tasks.
• Scheduler is power aware

• Puts processor into Sleep mode when
queue is empty.

TOS Component

TOS Component Types
l Hardware Abstractions
l RFM radio component

l Synthetic Hardware
l Radio Byte component

l High Level Software
l Messaging Module
l Performs control, routing and all data

transformations
l Filling in a packet buffer and dispatches

received messages

Simple Configuration

RFM

Radio byte

Radio Packet

UART

Serial Packet

i2c

Temp

photo

Active Messages

clocks
bit

byte

packet

Route map router sensor applnapplication

HW

SW

Evaluation
1. Small Physical Size
• Entire application takes 226 bytes of data,

under 50% of 512 bytes available

Efficient Modularity
l Events and Commands propagates quickly
l Total propagation delay up the 5 layer radio

communication stack is about 40 micro-seconds

Timing diagram of event propagation
Slide courtesy Jason Hill et al

• When active, power consumption of LED and Radio
reception are about equal to processor

• Processor, radio, sensors at peak load consumes
19.5mA at 3.0 V or about 60 mW

003 mAEE-Prom

0

0

4.5 mA (RX)

0
2 mA

Idle

0200 μATemperature

0200 μAPhoto Diode

5 μA7 mA (TX)Radio

04.6 mA eachLED
5 μA5 mAMCU

SleepActive

Power Breakdown

Work and Energy breakdown

l Successfully demonstrated a system with
multiple flows of data running through a
single microcontroller

Components
Packet reception
work breakdown CPU Utilization Energy (nj/Bit)

AM 0.05% 0.20% 0.33
Packet 1.12% 0.51% 7.58
Radio handler 26.87% 12.16% 182.38
Radio decode thread 5.48% 2.48% 37.2
RFM 66.48% 30.08% 451.17
Radio Reception - - 1350
Idle - 54.75% -
Total 100.00% 100.00% 2028.66

Slide courtesy Jason Hill et al

Conclusions
• Small memory size
• Power efficient

• Put micro controller and radio to sleep
• Efficient modularity
• Concurrency-intensive operations

• Event-driven architecture
• Efficient interrupts/events handling

• Real-time
• Non-preemptable FIFO task scheduling
• No real-time guarantees or overload protection

References

• “A wireless embedded sensor architecture for
system-level optimization” by Jason hill and David
Culler

