

Linux Firewall Performance Analysis

Noe Nevarez and Huy Duc Vo, Graduate Students, University of Houston

Abstract – The goal of this experiment is to show how
a linux based firewall can perform as well as most of the
more expensive commercial appliances that are out
there. This type of firewall may be beneficial for small
business or businesses at home that don’t have enough
financial resources for the more expensive firewall
appliances. We will be using an application called
iptables which runs natively in most if not all linux
flavors. This linux firewall will serve as a gateway for
internal users as they access external networks outside
of the firewall and the internet. We will be using a
program called httping and Wireshark to measure the
following metrics: Throughput, Protocol Latency, and
Concurrent connections (per-second).

Index Terms – egress, ingress, Stateful

I. INTRODUCTION

A firewall is basically a barrier to protect services
that are often mission critical to an organization.
Network Engineers often implement these devices at
specific locations within a network to protect against
many forms of attacks. Every type of firewall has a
set of configurable rules that define a global security
policy. This policy can be binded to specific
interfaces of the device while the firewall runs a
Stateful Inspection of the traffic entering or leaving
an interface. Stateful Inspection means that the
firewall can maintain a record of all the connections
entering/leaving the firewall, by monitoring each
packet at layer 4 of the OSI model. This helps
enforce security policies by allowing transport layer
filtering to either allow or deny a packet from
entering your protected network. In order to
determine what type of firewall is base for a given
organization, you must know the current and future
data usage for the network you looking to implement
this with. This is usually the job of the Network
Architect to define the requirements before a vendor
is chosen. Once the firewall is implemented, the
firewall must be thoroughly tested using a
predetermined set of metrics. Some of the most
important metrics are:

• Throughput: The rate at which device
sends or receives data.

• Protocol Latency: This is the time
between when the request was sent to the
reply was received.

• Concurrent connections (per-second):
The rate at which new TCP connections
are established per second.

These metrics are frequency used to test the
performance of many different types of architectures
and configurations.

II. ANALYSIS OF METRICS

I will now explain some common metrics that are
used to test the performance of a firewall. One of the
first metrics we will be testing is the Throughput
performance. Throughput is usually measured in
bits per second (bps). In this experiment we will be
converting (bps) to (Mbps). We will run our tests by
sending HTTP traffic from a client located on the
external network (outside firewall) to a server located
in the private network (inside firewall). All the HTTP
traffic will pass through the Linux Firewall to reach
the HTTP server. Throughput will be calculated by
the following formula:

• Throughput (Max BW) = RWIN/ RTT
- RWIN= TCP Receive

Window
- RTT= Round-trip-time for

the path

The default window receive size is 65,535 bytes
which is 524,280 bits. This is the value we will use
for RWIN in our throughput calculation. For the
purpose of this test, I will be using a linux application
called httping to measure the throughput of our
webserver. The full command I will be using will be:

- $httping –Gbg http://www.lynx-ste.lynx.com/

 In our next test we will be testing the Protocol
Latency of our Web Server. This is a very important
parameter since it is noticeable to the user trying to
access content on the webserver. We will run this test
by sending HTTP Traffic from a client to the server
while measuring the following items:

1) Connect Time: This is the time from when
the client sends the initial TCP segment with

http://www.lynx-ste.lynx.com/

the SYN flag set and the type it takes for the
server to respond with a TCP packet with
the SYN-ACK flag set.

2) Time-to-first-byte (TTFB): This is the time
that elapses before the client receives the
first byte of the HTTP response.

3) Time-to-last-byte (TTLB): This is the elapse
time it takes for the client to receive the last
byte.

Our last test will be measuring the rate at which
new connections are established in seconds. This
metric will show how well our linux firewall can
handle connections based on the scale of the
network and on the number of nodes that access
content on the server. The number of connections
that can be established on the webserver is
configurable. We will start this test by sending
HTTP traffic from our client to the HTTP server. I
will be using a HTTP Traffic generator (Developed
by NSASOFT) to send 200 connection requests to
the server and measure time.

III. IPTABLES COMPONENTS

A firewall policy is basically and ordered set of
rules that gets loaded into memory for the kernel to
take action upon. Each iptables rule is applied to a
chain inside a table. TABLE 1 shows the different
types of tables:

TABLE 1

FILTER Filtering rules are applied here
NAT Nat rules are applied here
MANGLE Rules that alter the packet are applied here
RAW Rules that should run independently of

iptables connection-tracking subsystem are
applied to this table.

There are many different types of chains but I will
only discuss the most widely used ones. You must
thoroughly understand these chains before you start
implementing the rules for your security policy. A
description of each chain is listed in TABLE 2.

TABLE 2

INPUT Packets destined to the firewall’s ingress
interface.

OUTPUT Packets destined out of the firewall’s
egress interface.

FORWARD Packets destined to another NIC on the
same host.

A visual representation of the chains from a traffic
perspective is listed in FIGURE 1.

FIGURE 1

IV. DEMONSTRATION REQUIREMENTS

We need to complete some preliminary steps before
we can test out iptables ability to prevent an ICMP
flood attack. TABLE 3 lists the hardware/software
requirements we are using for this scenario.

TABLE 3

CPU Arch. AMD Athlon (tm) Dual Core
Processor 4450e

MEMORY 1879.52 MB
NIC 2 100baseT/Full
Layer 2 Switch Procurve 408 switch
Layer 2 Switch Cisco WS-C2960-24-S
O/S Ubuntu 10.10
Iptables Version v1.4.4
Web Server apache2 - 2.2.16-1ubuntu3.1

All of these items are required components before we
start our testing scenario. You can see the topology
we will be using for testing in FIGURE 2.

FIGURE 2

Linux Firewall
(iptables)

client

L2 switch

Server
(various services)

 The client will be connected to a simple Layer 2
switch. This area will represent a network outside the
firewall. The Linux firewall will be configured with
two network interfaces (100Mbs). The Linux firewall
will be configured to forward packets destined to the
webserver in eth0 and out eth1 which is the interface
that connects to the webserver.

V. PERFORMANCE ANALYSIS

TABLE 1 (T)

Application: httping
Throughput Avg. (Mbps)
Webpage: http://lynx-site.lynx.com
50 HTTP GET Requests

T= 257.0625 Mbps

TABLE 2 (PROTCOL LATENCY)

Application: Wireshark
50 HTTP Requests

Connection Time (Avg. sec) 0.0361

Time-to-first-byte (Avg. sec) 0.0145

Time-to-last-byte (Avg. sec) 0.0226

TABLE 3 (CONNECTION RATE)

Application: Wireshark
100 -200 Connection Requests

Connection Rate: 4,066.00

You can see in FIGURES 3 and 4 that the CPU
utilization did not dramatically rise during all our
performance tests. You can also view the amount of
memory being utilized by each application using the
command listed in FIGURE 5. This command shows
you that the Ubuntu systems resources are not over
allocated.

FIGURE 3 (CPU 1)

FIGURE 4 (CPU 2)

FIGURE 5 (% MEM)

#ps aux | awk '{print $4"\t"$11}' | sort | uniq -c | awk
'{print $2" "$1" "$3}' | sort -nr | head
6.2 1 /opt/google/chrome/chrome
4.1 1 /usr/bin/X
3.1 1 /usr/bin/python2.6
3.1 1 /opt/google/chrome/chrome
2.2 1 mono
2.0 1 /usr/lib/nspluginwrapper/i386/linux/npviewer.bin
2.0 1 nautilus
1.8 1 mono
1.0 1 /usr/bin/python
1.0 1 /opt/google/chrome/chrome

• Note: This command lists the current % of

memory consumption per application running.
The “awk/sort/uniq/” commands are just to
format the output to make it clearly readable.
You can see that we do not have any abnormal
rise in memory usage even when the IMCP DoS
is occurring. The highest memory allocation is
for the Google Chrome web browser which is
using 6.2%

VI. CONCLUSION

You can see from measured data that the Linux
Firewall performs very well in all our tests. Some of
the limitations of Linux firewalls that use iptables are
that they don’t provide for redundancy like the
appliances do. This is usually not a huge issue since
the low cost is perfect for small businesses. Large
enterprises usually use a combination of High-End
firewalls and servers that use iptables to provide
layered security for servers. I certainly believe this
architecture will fit the needs for most small
businesses.

REFERENCES
[1] Michael Rask, “Linux Firewalls”, 1st ed, Library of

Congress Cataloging-in-Publication Data, 2007

http://lynx-site.lynx.com

