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Abstract

An image usually contains a number of different features and regions. Many image-related applications, such as content-based image

retrieval and MRI-based diagnosis, often require the ability to identify and mark features within the image. For images containing a specific

sort of feature (e.g. convective storm) or region (e.g. earthquake debris), that feature or region is always located adjacent to other features and

regions on the image.

A generic framework for automatically identifying features in images based on evolutionary computation is proposed here. The

significant characteristic of the method is that it does not require segmentation. We use evolution strategies as the optimization

algorithm to identify features. The system is based on a conjecture that certain filters will give prominent responses to certain features.

The identified features are represented as regions enclosed within the chosen search structure—the ellipse. By defining filter response

criteria as the fitness function, evolution strategies succeeds in finding the feature in a much more efficient way than, say,

segmentation.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Problem statement

In image processing, a typical problem is feature

identification, which can be formulated as: given an

image I, identify homogeneous areas with feature F. This

problem may be solved by various methods. Classical

techniques for finding regions directly include such as

region growing by pixel aggregation, region splitting and

merging [1]. More recent methods include clustering [15]

and texture-based techniques [12]. These methods are

effective, but require extensive computation. The evolution

strategies (ES) search method described here can examine

images ‘on the fly’ and reduce only the regions of interest,

omitting others.
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Possible applications of feature identification are:
†
 Remote sensing is the measurement of properties of an

object far away from the object. Applications include

cloud classification and terrain classification.
†
 Content-based image retrieval uses image content as a

search key. Some content types, e.g. water, sky, and

forest, have texture as an important characteristic. UC

Berkeley’s Digital Library Project is one of those typical

applications which use texture for retrieval purpose.
†
 Cancer is often characterized by textures with medical

imaging techniques. Early detection of cancer or lesions

from mammographic images is a significant specific

application.

The notion of ‘interesting’ feature differs from appli-

cation to application. A user has a specific domain-space

definition such as convective storm, forest fire, snow pack,

boreal forest, hydrocarbon spill, cancer lesion, and so forth.

This approach for identifying such features permits the users

to define the metrics to employ in a search. For example,
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UC Berkeley’s ‘blobworld’ describes a feature using color,

texture and position. Medical diagnoses often treat size,

location and texture as a lesion’s identification metrics.

Features in an image can also be described by statistical

information such as pixel mean, standard deviation, and,

covariance, or by transform responses such as Fourier or

wavelet coefficients. For textured images, wavelet transform

coefficients have been shown to be plausible metrics to

describe features in images [22]. Here we employ filters at

the signal level as a general way to extract a low level

representation of the specified features.

Many feature identification systems in literal are

application oriented and usually require complex compu-

tation. Obviously, if a user-defined feature F can be

distinguished from other features by having prominent

response to a filter, we can apply the filter to the image and

the feature will be identified as a region with higher energy

than adjacent regions.

The key contribution of the work described here is that a

feature identification system is proposed, which uses a

generic mechanism to describe features as higher energy

areas. An example of an outcome of a feature search is

shown in Fig. 1. (A convective storm is identified by an

encircling ellipse.) This is an actual result from our

prototype. Should an Earth-scientist present a sample

convective storm to the prototype, metrics (based on

texture) are devised which enable the discovery of similar

features on comparable images.
1.2. Previous work

Algorithms for finding interesting regions in images have

been proposed by Howe et al [9,11,19] and the aforemen-

tioned ‘blobworld’. Finding shapes, edges, and segments in

images using evolutionary computation is not common but

has been accomplished. Examples include the detection of

shapes and features using graph or semantic net matching

criteria given images that have been segmented by region

[20] or by edge [2,10]. Another approach, given that edge

detection has taken place, is feature recognition by matching

polygonal templates (angles and relative lengths of sides)

with a predetermined set of objects [14].
Fig. 1. An outcome example of feature identification.
Previously, we have conducted investigations leading

to feature identification using ES as well as applied the

method for image decomposition [4]. That work deals

only with finding a single interesting region within an

image and uses a simple criterion consisting of uniformity

of reflective illuminance. The experimental results are

adequate for simple features such as convective storms

that stand in great contrast with the background. However,

the experiments on some images containing natural

(i.e. non-cultural) scenes resulted in less satisfactory

outcomes.

The approach described here not only addresses the

shortcomings of the previous work but also generalizes

the method by parameterizing the criterion for ‘inter-

interesting feature’. We proposed a generic framework

for automatic multi-scale feature identification using

evolutionary computation. The user may substitute

suitable matched filters as deemed best for specific

applications.

The outline of the paper is as following: Section 2.1

gives a brief introduction on ES. Section 2.2 describes the

principles of feature identification system. Section 2.3

gives the search problem representation using ES, which is

followed by a description of objective function in Section

2.4. The remaining parts of Section 2 describes the image

processing steps required for our system, which include

Gabor filter banks, filter selection scheme, and feature

image construction. We present images tested and

experiment setup in Sections 3.1 and 3.2. In Section 3.3,

we report the test results for finding interesting features

in images. Finally, Our conclusions and a discussion is

in Section 4.
2. Automatic feature identification system

2.1. Evolution strategies

The reason that ES are chosen as the optimization

algorithm in feature identification system is that they are

well-suited for real function evaluation. That is, an ES

searches for ~x
�

such that f ð~x
�
ÞZopt~x f ð~xÞ:

The algorithm of the ES is first formulated in the

language of biology as following:
Step 0:
 A given population consists of m individuals. Each

is characterized by its genotype consisting of n

genes, which unambiguously determine the vitality,

or fitness for survival.
Step 1:
 Each individual parent produces l/m offspring on

average, so that a total of l offspring individuals are

available. The genotype of a descendant differs

only slightly from that of its parents. The number of

genes, however, remains n.
Step 2:
 Select the best of the offspring to form parents of

the following generation.



X. Yuan et al. / Image and Vision Computing 23 (2005) 555–563 557
The selection operators in ES are completely determi-

nistic. That is, given a population over which selection is

performed, the next generation is well-defined. This is a

minor but distinguishing characteristic of ES vis a vis other

evolutionary algorithms. The two used in ES are (mCl)

selection and (m, l) selection. The former scheme selects the

best m individuals from the combination of the previous m

parents and their l offspring to form the next generation,

while the latter selects the best m individuals from the

population of l offspring. The experiments implemented

here use the two schemes with same settings of parents and

offspring size.

Each ES individual, therefore, represents a point, ~x; on

the response surface f. Each xi, iZ1,2,.,n, is termed an

object variable and is represented as a real value in the

individual.

ES’s are essentially randomized hill climbers. Hill

climbing necessitates the resolution of two issues at each

iteration—(i) the direction to move and (ii) the distance

(step size). These issues are resolved by control variables

that are part of each individual. THUS, an ES individual is

partitioned into object variables and control variables as

illustrated below

hx1; x2;.; xl;|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
object variables

s1; s2;.;sm; q1; q2;.; qp

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{control variables

i

An object variable should be considered the mean of a

normally distributed random variate. Under that interpret-

ation, each si is a standard deviation for an object variable.

Thus m%l. (If m!l then sm applies to all xj, m%j%l.) Each

qi is a surrogate for the covariance of two object variables.

The ~q is organized as an upper triangular matrix as is a

covariance matrix. (That is to say, pZ(2lKm)(mK1)/2.)

The correspondence between qij, i, j%m and the covariance,

cij is tanð2qijÞZ2cij=ðs
2
i Ks2

j Þ:

An interpretation of an ES individual is an l-dimensional

jointly distributed normal variate with mean ~x and standard

deviation ~s: The object and control variables are adjusted

simultaneously by mutation operation. It should be noted

that the major quality of ES lies in its ability to incorporate

the optimization on object variables with self-adaptation on

control variables [3].
Fig. 2. Generic framework for fe
2.2. Principles of feature identification by evolutionary

computation

Fig. 2 shows the generic framework of the feature

identification system. The objective is to use the chosen

optimization algorithm to find the largest uniform areas that

conform to consistency verification rules. The uniformity

can be the measure of brightness intensity, reflective

illuminance, or texture.

The input for the optimization algorithm could be the

feature images from selected filter responses, or the original

image. When the interesting features are already prominent

(e.g. interesting features have uniform light intensity

different from the background) in the original image, then

the image can be used directly by the optimization algorithm

to find the largest uniform areas that conform to the

consistency verification rules. Otherwise, the feature

enhancing rules, which include feature extraction and

feature image construction system, can be applied.

The most critical component of the feature extraction

system is the filter bank. Filter banks are chosen to extract

features in the image by differentiating them from the

background or other features. Not all filter responses contain

useful information. The filter response selection algorithm

chooses the responses that contribute most to the total energy

in image. In our experiments, more than 20 Gabor filters are

tested in order to find the ones that generate the best

responses. The criteria to select filter responses can be salient

difference, local energy evaluation, etc. The salient differ-

ence criterion will choose the filter responses that give the

largest difference between specified features. Local energy

evaluation is based on reconstruction of the input image from

the filtered images, i.e. the energy of the reconstructed image

I 0 should be a good approximation of that of the original

image I. To avoid extensive computation, 2-D FFT power

spectrum analysis described in Section 2.6 is used.

Before applying the optimization algorithm, feature

images I 00 should be constructed from selected filter

responses to capture texture features defined by a measure

of energy in a small window around each pixel in each filter

response. This process will generate one feature image for

each selected filter response. The objective of local energy

function is to measure the energy in the filter response in

a local region. It consists of a nonlinearity and smoothing.
ature identification system.
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The purpose of post-processing, which includes dynamic

range adjustment and histogram equalization, is to make the

feature image a suitable representation for the optimization

algorithm.

Evolutionary computation algorithms, such as ES and

Genetic Algorithm, are direct, probabilistic search and

optimization procedures rooted in organic evolution.1 The

efficiency (or speed of approach to the objective) and

effectivity (or reliability under varying conditions) of ES to

deal with real number numeric optimization problems have

been proved in many experiments [18]. We formulated the

feature identification problem as searching in the feature

image I 00 for feature F, which has largest area and lowest

variation. Then the consistency verification is applied if user

has a priori knowledge about the characteristic of the

interesting features in the image. Only qualified results will

survive the selection. When the searching process termi-

nated either by fulfilling some convergence criteria or

timeout, the best candidate among these qualified solution

will be the output optimum.
2.3. Feature search problem representation

in evolution strategies

At the heart of this approach (and a chief contribution of

this paper) is transforming the feature identification problem

to a numerical optimization problem and using ellipse as the

search structure to represent the solution to the optimization

problem. The object variables of an ES individual are used

to represent an ellipse corresponding to a candidate region

containing a feature. The uniformity (as measured by to-be-

described metrics) of the region enclosed by the ellipse is

the fitness value for each candidate.

The form of an ES individual for our feature identifi-

cation system is (x1,x2,.,x5; s1,s2,.,s5; q1,q2,.,q10),

where the object variables are defined as a search structure:
(x1,x2)
1 We n

when sel

process i
the center of an ellipse
(x3,x4)
 the axis radii of an ellipse
(x5)
 the rotation angle of an ellipse
The control variables, ~s and ~q; have the standard

interpretation of defining the hyper-ellipsoid that proscribes

the mutation operator as described in Section 2.1.
2.4. Objective function

Objective function

gð~xÞ Z
stdð~xÞCd

numð~xÞCd
; (1)
oted earlier that selection in ES is deterministic. While that is true,

ection is combined with the other operators, the overall ES search

s probabilistic.
where

stdð~xÞ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2~x ðpi K �pÞ2

numð~xÞ

s
;

�p Z
P

i2~x pi

numð~xÞ
;

numð~xÞZnumber of pixels enclosed by ellipse ~x: d is a small

positive number to avoid zero fitness or infinite fitness

during optimization. This is necessary when the region of

interest is extremely homogeneous.

The objective function (Eq. (1)) returns the fitness value

of an ES individual. To recap, the object variables of an ES

individual define the search structure—an ellipse in the

feature space. Remember, the visualization of the 2-D ES

individual is also an ellipse in the solution space. In our

system, the homogeneity of feature is defined as the ratio of

standard deviation of pixels enclosed in the ellipse ‘area’ of

the ellipse. The area enclosed by the ellipse is calculated as

the number of pixels falling inside the ellipse. The ellipse

that encloses the larger region with the lower standard

deviation is favored, not necessarily the ellipse with the

lowest standard deviation value.

If input is the original image, the pixel value in the

image is used directly in Eq. (1) to evaluate the fitness of

each ES search structure. Thus piZi(x,y), where i(x,y) is the

pixel value in the image. If input is the filtered response,

then piZG(x,y), where G(x,y) is the Gabor coefficient for

pixel i(x,y).
2.5. Gabor filter bank

Filter banks are techniques that have been used mostly in

texture segmentation problem. There exists a number of

investigations concerning texture classification for texture

segmentation [5,13,16]. Randen [17] gives a good com-

parative study of different filter banks. For the test images

they are using, Gabor filter bank is neither the one that gives

the best texture segmentation results for all images, nor the

one that has the least computational complexity. However,

Gabor filter bank generally give good texture segmentation

results within a satisfactory time frame. We chose Gabor

filter bank in the feature identification system not only

because Gabor filters are among the first filters used for

texture analysis but also because it provides optimal joint

resolution in both the spatial and the spatial frequency

domains [6].

We used a bank of even-symmetric Gabor filters. This is,

in part, due to a report by Malik and Perona [23] who

hypothesize a psychophysical role for such filters. The basic

even-symmetric Gabor filter oriented at 08 is a band-pass

filter with impulse response:

hðx; yÞ Z e
K1

2
x2

s2
x

Cy2

s2
y

	 

cosð2pf0xÞ;

where f0 is the radial center frequency. Other orientations

are obtained by rotating the reference coordinate

system, (x,y).
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2.6. Filter selection scheme

The rationale of the filter selection scheme is the premise

that only a subset of filtered images can together explain a

‘significant’ portion of the intensity variations in image

I 0(x,y). Reconstruction of the input image I(x,y) is possible

by adding all of the filtered images. Here we assume that

I 0(x,y) is a good approximation of the original image. By

using only a subset of filtered images, the main features of

the original image are preserved while the computational

and storage complexity are reduced.

In Jain and Farrokhnia [12], a sequential forward

selection procedure is described for choosing the best filter

responses. This approach determines the best subset of the

filtered images by examining all possible filters with

different frequencies, orientations and sizes. An exhaustive

search, however, is computationally prohibitive. As a result,

[12] suggest using energy approximation in the Fourier

domain. The following approximate filter selection scheme

modified from theirs.
(1)
 Compute Ei (energy) for iZ1,.,n in the Fourier

domain using Eq. (2).

Ei Z
X
x;y

½rðx; yÞ�2 Z
X
u;v

jRiðu; vÞj
2: (2)

where r (x,y) is a pixel value in the image and Ri (u,v) is

the corresponding Fourier Transform coefficient.
(2)
 Sort the filter responses based on their energy.
(3)
 For images having a known number of features, choose

an equal number of filter responses having the highest

energy.
(4)
 For images having an unknown number of features,

choose as many filters as needed to achieve a pre-

defined portion of energy above an experimentally

determined ratio.
2.7. Feature image construction

When constructing a feature image, the first step is

evaluation of the local energy in filter responses In essence,

each Gabor filter is a band-pass filter with selective

frequency and orientation properties. The local energy

evaluation function converts regions where the local pass

band energy is strong into high gray-level values and

conversely for weak energy regions. Normally, accurate

energy estimation requires high spatial frequency, while

accurate edge-detection requires high spatial resolution.

These have to be balanced via a smoothing filter.

Strictly speaking, energy is defined with a squaring

nonlinearity. However, a generalized energy function may

opt to use other alternatives. Numerous nonlinearities have

been applied in the literature [7,8,12,21]. Some of the most

popular are the magnitude j$j, the squaring ($)2, and the

rectified sigmoid jtanhða$Þj: We use the squaring energy
function to construct the feature image as described in

Section 3.2.
3. Experiments

The experiments are constructed to be illustrative, i.e.

chosen to exemplify the performance of feature identifi-

cation using ES. In order to demonstrate the ability to find

features in images using ES, unsupervised feature identifi-

cation was performed on images of various geometric

complexity and textures.

The presentation of the experiments is organized in three

parts. Section 3.1 describes the test images used in our

experiments. In Section 3.2, we discuss the Gabor filter bank

design, the implementation of post-processing rules and

consistency verification criteria, as well as parameter

settings for ES. In Section 3.3, we show the feature

identification results for images containing natural and

synthetic scenes.

3.1. Test images

All test images have dynamic ranges of 8 bits per sample.

The tested images were categorized into synthetic images

(Fig. 4) and natural scene images (Fig. 5). The texture in the

synthetic images was generated by a high frequency

sinusoid superimposed onto a low frequency sinusoid. The

background in Fig. 4(d) and (e) was generated by a low

frequency sinusoid. The synthetic images are used to

illustrate the conjecture that if proper filter banks are

prescribed, feature F contained in an image can be found

using ES. The natural scene images are used to illustrate that

even if the filter banks are not optimal, features can still be

found with redundant filters. Even though these redundant

filters will inevitably result in higher computational

complexity, it shows that an optimal filter bank is not

necessary for feature identification using this method.

3.2. Experimental setup

In the literature, different choices for filter banks are

reported. Basically, they can be categorized as either a priori

fixed filter banks or optimized filter banks. The a priori fixed

filter banks include Laws filter masks, Ring and wedge

filters, the dyadic Gabor filter bank, Wavelet transforms,

packets, frames and Discrete Cosine Transform (DCT).

The optimized filter banks may include eigen-filter bank,

optimal representation Gabor filter bank, optimal two/multi-

class Gabor filter bank, optimal FIR filters and back

propagation designed masks [17].

Jain and Farrokhnia [12] recommend the dyadic Gabor

filter bank. It is the one we select to distinguish different

textures and oriented patterns. The dyadic Gabor filter bank

is a set of Gaussian shaped band-pass filters with dyadic

coverage of the radial spatial frequency range and multiple



Fig. 3. Filter responses for dyadic Gabor filters. The axes are in normalized

spatial frequency.

Table 1

Summary of test conditions and results for feature identification system

Images Gabor filter bank Consistency

verification

threshold

Features

found
Radial

frequency

Orien-

tation (8)

Synthetic

images

a1

ffiffiffi
2

p
=24 0 200 1

a2 45 1

a3 90 1

a4 135 1

a5 0 1

a6 45 2

135

a7 0 3

45

90

a8 0 4

45

90

135

Natural

scene

images

n1

ffiffiffi
2

p
=22 0 180 1

n2

ffiffiffi
2

p
=22 90 170 1

n3

ffiffiffi
2

p
=22 45 205 2

n4

ffiffiffi
2

p
=22 45 120 3

0 170

n5

ffiffiffi
2

p
=2 0 120 1

n6

ffiffiffi
2

p
=22 0 170 1
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orientations. [12] concluded that the choice of Gabor filters

can be justified by filters’ joint optimum resolution in time

and frequency. Fig. 3 shows the frequency response of the

dyadic Gabor filter bank with radial frequency of
ffiffiffi
2

p
=26;ffiffiffi

2
p

=25;
ffiffiffi
2

p
=24;

ffiffiffi
2

p
=23 and

ffiffiffi
2

p
=22 and orientations of 0, 45, 90

and 1358. The maximum amplitude response over all filters

is plotted. One center-symmetric pair of lobes represents a

Gabor filter. For synthetic images, filters with lower radial

frequencies (e.g.
ffiffiffi
2

p
=22 and

ffiffiffi
2

p
=2) are not very useful

because the captured spatial variations are too large to

explain textural variations. However, for natural scene

images, it is necessary to capture spatial variations with low

frequency. As a result, radial frequency
ffiffiffi
2

p
=2 is not used for

the synthetic images in our experiments, while for images

containing natural scenes, only
ffiffiffi
2

p
=24;

ffiffiffi
2

p
=23 and

ffiffiffi
2

p
=22 are

tested.

The energy contained in each filter response is evaluated

using a 2-D FFT power spectrum for the purpose of

selecting proper filter responses. For synthetic images, since

we know the number of features (N) in the image, the filter

responses for which the total energy ranked in the top N are

selected. For natural scene images, filter responses are

sorted by their contribution to the total energy, which is

calculated as the sum of energy contained in all filter

responses. Here, an empirically determined percentage of

40% is used. Beginning with the highest response filter then

continuing in descending order, filters are chosen for which

the cumulative energy is no less than 40% of total energy.

Since the purpose is not to reconstruct the image, 40% is

sufficient to select a reasonable number of filters.

The local energy function used to construct the feature

image (see Fig. 2) is described in Section 2.6, i.e.

nonlinearity and smoothing with a Gaussian smoothing

filter. We used magnitude squaring ($)2 for its simplicity as

well as ability to emphasize a feature. The size for Gaussian

smoothing filter is a function of the band center frequency.

In the experiments, since the band center frequency of the
synthetic images is known, and the band center frequency

for natural images is relatively low, we chose an 8!8

window for Gaussian smoothing filter.

The final step in feature image construction is post-

processing rectification, which include dynamic range

adjustment and histogram equalization. Here, rectification

is understood as the operations of transforming amplitudes

to the dynamic range of 0–255 and increasing the contrast

between regions in the filtered image. This scaling does not

affect the relative difference in the strength of the responses

in different regions.

The ES shell program used is the Optimum Seeking

Methods (OptimA) package written by Menhnen and

distributed with a text by Schwefel [18]. After incorporating

our own core objective function and image reading/writing

functions, we set up the experiment on a SUN Ultra 5

workstation. The parameters used are as follows. We tested

(mCl) selection and (m,l) selection with same population

size setting—50 for the parent population and 300 for the

descendant population. The recombination operators on

object variables and control variables are discrete recombi-

nation on object variables and panmictic intermediate

recombination of control variables, respectively. A conver-

gence criterion is, tested after each 10 generations and a

maximal computation time of 20 s (CPU time) is set to

terminate the search in case the convergence criterion is

not met.

A comparable region identification method is based on

selecting the subimages having maximum entropy [24]

given an a priori partition. (Entropy is computed over



Fig. 4. Results of experiments on synthetic images: (a–d) one feature with orientation at 0, 45, 90, 1358, respectively; (e) one feature with different radial

frequency than it’s background; (f) two features with different orientation, 45 and 1358, on a background with different central frequency; (g) three features with

different orientation; (h) four features with different orientation.
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normalized intensity but could just as well be a function of

filter responses.) Selection via entropy maximization has

roughly the same computational cost for a single a priori

partition. Our method might be viewed as a search across all

partitions simultaneously.

The threshold defined for the bright intensity, which

usually represents higher energy, is used as a consistency

verification criterion. The threshold should be selected so

that it will discourage ellipses from expanding into adjacent

regions. This was accomplished by looking for ‘valleys’ in

the histogram of the rectified feature image or original

image if the optional feature enhancement step is not

applied [4]. The threshold will separate the population into

two sets. One contains candidate solutions with average

intensity greater than the defined threshold and is used to
Fig. 5. Results of experiments on natural scene images: (a) and (b) one feature wi

one feature with non-ellipse-like geometry.
form the mating pool; the other set contains solutions with

average intensity less than the defined threshold and is

discarded.
3.3. Test results

This section presents the results of experiments on both

synthetic and natural scene images. Both types of images are

chosen so that some images contain ellipse-like geometry

features and others contain features with a more arbitrary

geometry. Table 1 shows the summary of test conditions

and results for synthetic images as well as those containing

natural scenes.

For synthetic images containing simple textures, the

results are straightforward. Features with different
th ellipse-like geometry; (c) and (d) more features identification; (e) and (f)
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orientations are detected and different textures are differ-

entiated both from each other and from the background

(Fig. 4). For natural scene images, as might be expected, the

Gabor filter bank is not able to reflect all texture variations

(Fig. 5). However, with the help of an empirically

determined threshold for consistency verification, the ES

algorithm can find all pre-defined interesting features in the

images. We believe that the results are just as robust with

the consistency verification threshold (and other ES

parameters) when an appropriate filter bank is found for a

specific feature.

Based on the experimental results on test images, both

(mCl) selection and (m,l) selection find the optimum.

However, (m,l) selection shows better convergence per-

formance. This conforms to the recommendation by Bäck

[22]. It is also obvious that even though features with non-

ellipse-like geometry can be found, the inevitable side effect

posed by the ES search structure is that a small portion of

adjacent non-feature areas is also included. Fig. 4 contains

synthetic images that illustrate two characteristics of the

method-inclusion of non-feature areas given concave

shapes, e.g. part (e) of the figure and the method’s

effectiveness at adapting to orientation. Fig. 5 shows the

performance over six realistic images with widely varying

feature shapes and textures.
Fig. A1. Illustration of ES organisms.
4. Conclusion and discussion

A generic framework is described here to automate

feature identification in images This work also generalizes

the identification process by parameterizing the criterion for

‘interesting feature.’ Based on a conjecture that certain

filters will give prominent responses to certain features, we

transform the feature identification problem into a numeri-

cal optimization problem and use ES with an ellipsoid

search structure.

Tests on synthetic and natural scene images have been

described. We used a Gabor filter bank to differentiate

features and used the 2-D FFT power spectrum for filter

response selection. Each feature image was constructed

using a local energy evaluation function ($)2, Gaussian

smoothing filter, and rectification. Consistency verification

is defined as hard thresholding. The work also confirms the

recommendation by Bäck [3] that (m,l) selection has better

performance than (mCl) selection regarding accelerating

effects of self-adaptation.

We emphasize that the proposed system is extremely

effective for feature identification. The system performs

well and the rate of correct feature identification is nearly

perfect in all simulation results. However, a small portion of

adjacent non-feature regions is sometimes included when

features do not conform to the ellipse-like geometry of the

search structure.

A final issue should be noted is the initial value of the

search structure-sometimes called the embryo. By changing
its value while keeping other parameters fixed, we tested for

robustness. It is not surprising that the search still converged

to the global optimum. The only case that the search result is

sensitive to the embryo was when there were more than one

feature that exhibited similar responses to filter bank and the

features are not adjacent in the image. A more complete

discussion of embryos and their effect on the search is out of

the scope of this paper.
Appendix A. Object and control variables in evolution

strategies

Before describing the ES representation, it is important to

note that ES’s are specifically designed for real function

evaluation. That is, an ES searches for ~x
�

such that

f ð~x
�
ÞZopt~x f ð~xÞ:

An interpretation of an ES organism is an l-dimensional

jointly distributed normal variate with mean ~x and standard

deviation ~s: The orientation of the distribution in l-space is

determined indirectly by the covariances, and directly by ~q:

For object identification purpose, different shapes of

polygon such as rectangle can be used as search structure.

The search ellipse covers a region in the images with

adjustable five parameters, which are the center point

(x1,x2), the axes (x3,x4) and the angle x5 between axes x3 and

x4. These five parameters are treated as object variables in

our optimization problem. The idea of using ellipse as

search structure is inspired by the 2-D ES representation.

If the optimization problem is defined on two object

variables, two examples of the organisms h10.0 8.0; 4.0 2.0;

0.0i and h25.0 20.0; 2.0 4.0; p/2i are illustrated in Fig. A1—

the former in the lower left and the latter in the upper right.

The crosshairs intersect at the mean and the height/width

represent two standard deviations in the appropriate

directions.

Although it looks like the ellipse search structure, the

2-D ES representation has a different meaning. The 2-D ES
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representation shows the current position in the search

space, the possible direction and step size for next move.

On the other hand, the ellipse search structure is defined on

5-dimensions and, therefore, it involves a hypersphere

representation in search space and is difficult to visualize.
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