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Abstract— In this paper, we apply a Bag-of-Features ap-
proach to malignant melanoma detection based on epilumi-
nescence microscopy imaging. Each skin lesion is represented
by a histogram of codewords or clusters identified from a
training data set. Classification results using Naive Bayes
classification and Support Vector Machines are reported. The
best performance obtained is 82.21% on a dataset of 100 skin
lesion images. Furthermore, since in melanoma screening false
negative errors have a much higher impact and associated cost
than false positive ones, we use the Neyman-Pearson score in
our model selection scheme.

I. INTRODUCTION

Local patterns are important features for early melanoma
detection. Many criteria like the ABCD rule, 7-point check-
list, and Menzies’ method used by dermatologists are based
on the presence of certain texture patterns. Most existing
studies focus on detecting a specific texture pattern, such as
a dark area by Pellacania et al. [6], asymmetric blotches
by Stoecker et al. [9], and irregular streaks and atypical
pigmented network by Betta et al. [2]. In this paper, we
attempt to build classifiers for melanoma detection based
on the distribution of local patterns. Bag-of-Features based
image classification is widely used in computer vision [3],
[4]. It is analogous to Bag-of-Words for document modeling,
and models an image as a histogram of “visual words”
that serves as an input feature vector for the classification
algorithm. “Visual words” in a codebook are built from
quantization of descriptors of local image patches which are
sampled from a training set. Quantization can be performed
by standard clustering algorithms, such as k-mean and EM,
and the centroid of each cluster is a “visual word” in the
codebook. A new image is represented by image patches, and
each patch is assigned to the cluster of its nearest neighbor
in the codebook.

A codebook is used to quantize the continuous signal into
a discrete one [3]. We can also cluster the local image patches
into groups to discover similar skin lesion patterns among the
training data. This is analogous to discovering common “top-
ics” shared among several documents by grouping “words”
into clusters. One problem here is that we do not know
the number of clusters or the number of different patterns
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present in the training images. Dirichlet process is a recently
used method to choose the number of cluster. Orbanz et al.
[5] accomplished image segmentation based on a Dirichlet
process that incorporates Markov Random Field. We applied
their algorithm to discover the shared clusters among skin
lesion images. As before, the histogram of the “topics” can
also be the “signature” of a skin lesion. Controlling the
sensitivity and specificity of the classifier is crucial. The“2C-
SVM” algorithm [10] is applied to generate a classifier by
placing different weights on positive and negative samples.

Since in cancer screening the cost of a false negative error
is much higher than a false positive, we require that the
false negative rate be smaller than some threshold, while
minimizing the false positive rate. To achieve this objective,
a Neyman-Pearson score (NPS) has been proposed by Scott
[8] for model selection and NPS can be used for any learning
algorithm. Scott [8] proved that with sufficient large training
samples, the model selected by the NPS criterion can ensure
that the false negative rate on test data will remain below
a certain threshold. ROC curve and AUC criteria are also
widely used for model selection, but as pointed out by Scott
[8], ROC measures compare the performance of a family
of classifiers. Instead, our ultimate goal is to find a single
classifier for our automated skin-cancer detection system,
and Neyman-Pearson score seems the proper choice.

II. METHODS

A. Bag-of-Features

Each skin lesion is represented by a Bag-of-Features
defined on several patches sampled on the image. To describe
each patch, we used wavelets and “Gabor-like” [7] filters in
our experiment, but several other texture features can alsobe
used. A3-level wavelet decomposition is applied to16× 16
image patches and the energies of the10 subbands are used
as patch descriptors. The advantage of the “Gabor-like” [7]
filters developed by Schmid is that they are invariant to
rotation. The energies of13 channels are used as descriptors
for one image patch and the features are normalized by the
mean and variance estimated from the training data [7]. K-
means clustering is used to quantize the features.

B. Mixture Dirichlet Process and Markov Random Field

The Mixture Dirichlet process (MDP) has recently become
a popular method to choose the number of clusters. Orbanz
and Buhmann [5] incorporated Markov Random Field (MRF)
into MDP and developed the combined MDP/MRF segmen-
tation method. Their idea can be explained by the “Chinese
Restaurant Process” (CRP): suppose that there aren data



points (image patches in our problem), and(x1, x2, . . . , xn)
denote the cluster of the corresponding patches. Letnk

denote the number of patches in clusterk andc the number
of clusters, and letx−i andn−i

k indicate that we exclude the
ith patch. By assuming exchangeability of every two patches,
a nonparametric prior is defined as follows:

P (xi = k|x−i) ∝ n−i
k exp(−H(k|x−i)) (1)

P (xi 6= k, k = 1, 2, . . . , c|x−i) ∝ α (2)

The termH(k|x−i) will have a smaller value if the neighbor
of patchi belongs to clusterk (8-connected neighborhoods
are used in our experiment). The prior thus defined has the
following meaning: assuming that we know the assignment
of all patches excepti, the probability of patchi belonging to
clusterk is proportional to the number of patches in cluster
k times the effect of the termH . The effect of the term
H above is obvious: neighboring patched are encouraged to
be grouped into the same cluster. The probability of patch
i belonging to a new cluster is proportional toα. If patch
i belongs to a new cluster, it draws a new parameter from
a base measureG0 for that new cluster. A detailed math
derivation can be found elsewhere [5].
To make an inference, a Gibbs sampling algorithm has
been developed [5]. The parameters of each cluster can also
be obtained by running the Gibbs sampling algorithm on
training images. For a new image, the same sampling scheme
from [5] can be used, except that the parameters are fixed to
those learned from a training set instead of updating them
at each step. Following [5], the features extracted for each
patches are quantized local histograms of intensity (8 bins
quantization is used in our experiments).

C. Classifiers

Similar to previous work [3], two types of classifiers are
employed in this study: Naive Bayes classifier and Support
Vector Machines (SVM). In order to control the sensitivity
and specificity of SVM, the so-called “2C” formulation of
SVM described below is used in our experiment to generate
ROC curves and control false negative error rate.

1) 2C Support Vector Machines (SVM):Assume that we
havem benign samples(x1, y1), . . . , (xm, ym) andn malig-
nant samples(x1+m, y1+m), . . . , (xm+n, ym+n), wherexi is
the feature vector of lesioni, i.e. the histogram of lesioni,
andyi is the corresponding label. The “2C” SVM algorithm
proposed by Veropoulos et al. [10] is formulated as follows:

minw,b,ξ

1

2
|w|2 + C1(C2

m∑

i=1

ξi + (1 − C2)

m+n∑

i=1+m

ξi) (3)

s.t. yi(w
T · φ(xi) + b) ≥ 1 − ξi, i = 1, 2, . . . , m + n

(4)

ξi ≥ 0, i = 1, 2, . . . , m + n (5)

whereC1 represents the trade-off between the regularization
term and the empirical cost estimated from the training set,
while C2 is a parameter in(0, 1) representing the weights of
the two classes. ROC curves can be obtained by changing
the value ofC2 within (0, 1).

D. Neyman-Pearson Score for Model Selection

ROC analysis compares a family of classifiers rather than
giving a particular classifier. In addition, for cancer detection,
controlling the sensitivity is more important. In other words,
we want to control the false negative rate (PFN ) within a
certain range(≤ α) while minimizing the false positive rate
(PFP ). In practice, however, a strict criterionPFN ≤ α

may not be feasible. It depends on the training data and
the complexity of the model designed. Hence, in practical
implementations,PFN ≤ α + ǫ is used instead. Such a
learning paradigm is called Neyman-Pearson learning [8],
and Scott [8] proposed the Neyman-Pearson score (NPS)
both for model and parameter selection,

NPS =
1

α
max(P̂FN − α, 0) + P̂FP

whereP̂FN and P̂FP are empirical estimates from training
data. The advantage of this criterion is that it can be used
for any kind of learning algorithm.

III. EXPERIMENTS

A. Experiment Setup

Algorithms are tested on a data set consisting of100
epiluminescence microscopy skin-lesion images,70 images
are benign and include nevocellular nevi and benign dys-
plastic nevi. The other30 skin lesion images are malignant
melanomas. Data are randomly split into80% for training
and20% for testing. The ratio between benign and malignant
images is maintain the same both in the training and testing
sets, while an8-fold cross validation is employed for model
and parameter selection. Results are reported as the average
of 100 repeated experiment. Skin lesions are segmented by
active contour methods developed in our lab [11]. Segmen-
tation results are validated by manual segmentation from
three dermatologists [11]. A bounding box of the segmented
lesion is extracted and scaled to256× 256 pixels for further
processing, and16× 16 patches are sampled from a16× 16
regular grid placed on the256 × 256 ROI. Patches whose
area is more than50% outside the skin lesion are discarded.

B. Codebook and Shared Cluster

Wavelet and “Gabor-like” filters are applied to each16×16
image patch. A set of10 features are obtained from the
wavelet filter and13 more are obtained from the “Gabor-
like” filter. A widely used method for quantization is k-
means clustering. A universal way to determine the codebook
size has not been developed yet. It is observed that larger
codebook sizes can lead to obtain higher accuracy [3], [4].
But, overfitting is also reported in [4] with a large codebook
size. In our experiments, we tested the effect of different
codebook sizes, namely16, 32, 64, 128, 256, and512.

In accordance with the combined MDP/MRF method
developed previously [5], we setλ = 5 (higher values
result in a stronger smoothing effect),α = 10−4 (the
recommended values are between1 and 10−5), while 400
iterations are used for the Gibbs sampler. The typical number
of cluster we obtained in100 repeated experiments ranged



from 38 to 41 by clustering more than13000 patches. Fig. 1
shows an example from the100 experiments performed. Two
malignant lesions are shown in (a) and (b). The clustering
algorithm automatically discovered shared clusters in thetwo
lesions which are shown in (c) and (d). We can see that
the shared cluster corresponds to the so called dark area
[6] which is usually present in malignant lesion. Panels (e)
and (f) are the histograms of clusters or the “signatures”
of the two lesions, which will be the input of classification
algorithm.
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Fig. 1. (a) and (b) are two malignant skin lesion images. (c) and (d) are
shared cluster(dark area blotches) discovered by the algorithm. (e) and (f) are
histograms of clusters for the two skin lesions. The first cluster corresponds
to (c) and (d).

C. Naive Bayes Results

We present classification results using features extracted
from three methods: (1)wavelet and k-mean, (2)“Gabor-like”
filters and k-mean, and (3) local histogram and MDP/MRF.
Fig. 2(a) shows the classification accuracy results for code-
books built from wavelet features and “Gabor like” features
with different codebook sizes. Fig. 2(a) clearly shows that
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Fig. 2. (a) Classification accuracy using “Gabor-like” feature (red) and
wavelet feature (blue) with different codebook size; (b) Accuracy of SVM
with GHI kernel(blue), RBF kernel(red), and Bayes (green) classifiers with
different codebook size.

wavelet features outperform “Gabor like” features for dif-
ferent codebook sizes. Classification accuracy using features
obtained from local histograms and combined MDP/MRF

TABLE I

AUC FOR TWO TYPE OF KERNELS:RBF AND GHI.

size 64 128 256 512

RBF 77.43% 78.36% 82.11% 81.29%
GHI 78.19% 81.64% 81.37% 82.21%

is only 76.85%, which does not outperform wavelet feature
with a codebook size of higher than64. Wavelet feature
provides better results than “Gabor-like” feature and feature
obtained from combined MDP/MRF on simple Bayes classi-
fier. The rest of the experiments based on the more advanced
SVM classifier are done using only wavelet features.

D. SVM Results

For standard “C-SVM”, C is searched in the set
{2−5, 2−4, . . . , 24, 25}. Two types of kernel are used in
our experiment: RBF kernel and Generalized Histogram
Intersection kernel (GHI) [1]. In the former case, the width
parameter is searched in the set{2−10, 2−9, . . . , 29, 210},
whereas in the latter, Boughorbel et al.,[1] reported that the
parameterβ gives good result when near0.25. Then, we
searchβ in the set{0.2, 0.25, 0.3}. The accuracy results
reported in Fig. 2(b) show that the GHI kernel is better
than the RBF kernel and Naive Bayes classifier by using
the histogram features extracted earlier.

E. SVM Model Selection by ROC Analysis

ROC curve and AUC (area under curve) are widely used
measures to analyze the performance of classifiers. ROC
curves for the two types of kernels RBF and GHI with
different codebook sizes are shown in Fig. 3(a) and Fig. 3(b).
The ROC curves are obtained by connecting sampled points,
since it is time expensive to get all possible points. Then, the
calculated values for the AUC corresponding to the curves
thus obtained are only approximations, and they are reported
in Table I. Again, we see that the GHI kernel outperforms
the RBF kernel for various codebook sizes. A codebook size
greater than or equal to128 for the GHI kernel and256
for RBF kernel can give good results. The best AUC’s are
obtained by a model with a codebook size of512 that uses
the GHI kernel.
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Fig. 3. (a) ROC curve of SVM with GHI kernel. (b) ROC curve of SVM
with RBF kernel and codebook size64 (red),128 (green),256 (blue), and
512 (yellow).



TABLE II

RESULTS OFMODEL SELECTION BYNPS FOR GHI KERNEL.

Parameters sensitivity specificity NPS

α = 0.2, size= 128 80.50% 74.07% 25.93%
α = 0.2, size= 256 78.00% 77.75% 32.25%
α = 0.2, size= 512 80.33% 78.50% 21.50%
α = 0.15, size= 128 84.50% 71.93% 31.40%
α = 0.15, size= 256 82.17% 74.79% 44.08%
α = 0.15, size= 512 83.17% 76.29% 35.91%

α = 0.1, size= 128 88.80% 69.29% 42.71%
α = 0.1, size= 256 86.83% 71.57% 60.13%
α = 0.1, size= 512 86.00% 72.21% 67.79%

F. SVM Model Selection by Neyman-Pearson Score

Instead of comparing a family of models, we are more
interested in finding one single classifier. Model selectionby
the Neyman-Pearson score is suitable for this purpose [8].C2

for “2C SVM” is searched in the set{2−1, 2−2, . . . , 2−15},
while C1 is the same as theC in standard SVM used
before. Results of different controls (α = 0.2, 0.15, 0.1)
using the GHI kernel are reported in Table II. Sensitivity is
successfully controlled to be above1−α whenα = 0.2 with
a codebook size of128 and512. Whenα decreases to0.15
and0.1, the sensitivity also increases close to1−α, but fails
to meet the strict criteria, since for a smaller value ofα, more
training samples are required for proper model selection.
With limited number of training samples, our results indicate
that model selection byNPS is still effective to control the
false negative error rate.

IV. D ISCUSSION

The results presented above indicate that the GHI kernel is
preferred to RBF kernel for the features we extracted, since
the “signature” we used for each lesion is a histogram, and
the GHI kernel is more suitable for classifying histogram
data [1]. Choosing a proper kernel is important for the SVM
to give good performance. The widely used RBF kernel
performed even worse than the simple Bayes Classifier in
Fig. 2(b).

Classification performance with features extracted from
MDP/MRF and local histograms IS not improved compared
to k-means with wavelet features and a large codebook size.
However, the MDP/MRF method can provide meaningful
clusters (Fig.1(c) and (d)) that are interpretable by humans.

In our experiments using Neyman-Pearson score for model
selection, theα value was0.2, 0.15, and0.1. But in practical
screening of malignant melanoma, a much smaller value of
α should be used. A further decrease in the value ofα causes
the specificity to drop below70%, which does not have much
practical value. One reason for this is the limited size of the
training data we used. To obtain a good result for smaller
values ofα a larger training sample would be required.

V. CONCLUSIONS AND FUTURE WORK

In this study, we present experimental results obtained by
applying the Bag-of-Features approach to the problem of

automatic detection of malignant melanoma. The “signature”
of a skin lesion is obtained by building a codebook with
texture features and k-means quantization. A method to
discover shared clusters among lesions by the Dirichlet
process has also been tested here. and the best classifier was
obtained with an AUC of82.21% from wavelet features and
a codebook size of512. Neyman-Pearson score is used to
choose a single classifier and to control the false negative
rate. Our experiment results demonstrate that model selection
by Neyman-Pearson score is effective. To further improve
classification performance, combining other features like
color and border will be our future work. For the Dirichlet
process, we only use local histogram features as [5]. Other
texture features will be included into the MDP/MRF method
and hierarchical models will also be explored. This requires
a more efficient algorithm, as Gibbs sampling is too slow
to converge. It is also interesting to see whether the clusters
detected by computer algorithms match the patterns obtained
when using the criteria established by dermatologists.
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