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Abstract

Much work on skewed, stochastic, high dimensional, and
biased datasets usually implicitly solve each problem sepa-
rately. Recently, we have been approached by Texas Com-
mission on Environmental Quality (TCEQ) to help them
build highly accurate ozone level alarm forecasting mod-
els for the Houston area, where these technical difficulties
come together in one single problem. Key characteristics of
this problem that are challenging and interesting include:
1) the dataset is sparse (72 features, and 2% or 5% posi-
tives depending on the criteria of “ozone days”), 2) evolv-
ing over time from year to year, 3) limited in collected data
size (7 years or around 2500 data entries), 4) contains a
large number of irrelevant features, 5) is biased in terms of
“sample selection bias”, and 6) the true model is stochas-
tic as a function of measurable factors. Besides solving a
difficult application problem, this dataset offers a unique
opportunity to explore new and existing data mining tech-
niques, and to provide experience and guidance for simi-
lar problems. Our main technical focus addresses on how
to estimate reliable probability given both sample selection
bias and a large number of irrelevant features, and how to
choose the most reliable decision threshold to predict the
unknown future with different distribution. On the applica-
tion side, the prediction accuracy of our approach is 20%
higher in recall (correctly detects 1 to 3 more ozone days,
depending on the year) and 10% higher in precision (15
to 30 fewer false alarm days per year) than state-of-the-art
methods used by air quality control scientists, and these re-
sults are significant for TCEQ.

1 Introduction and Motivation

Ground ozone level depends on a sophisticated chemical
and physical process as a function of many known and un-
known factors, and stochastic in nature (i.e, with the same
set of currently observable variables, the ozone level can

differ from time to time). It has been an active topic for
air quality study, an interdisciplinary field among atmo-
spheric research, geochemistry, and geophysics, for many
years since an ozone level above some well known thresh-
old is rather harmful for human health, and affects other
important parts of our daily life, such as farming, tourism
etc. Therefore an accurate ozone alert forecasting system is
necessary to issue warnings to the public before the ozone
reaches a dangerous level. In air quality study, the estima-
tion of ozone level uses known physical and chemistry reac-
tion theories that attempt to explain the “true” mechanisms.
There are several such theories around. As a result of these
research, simulation systems, physical formulas and para-
metric models are created to calculate ozone level.

However, due to the difficulty of the problem and still
limited knowledge about the true physical and chemical
mechanism, existing approaches can only use a rather small
number of parameters (≤ 10), and are still rather inaccurate
and can be costly to build. However, it is a common be-
lief among environmental scientists that a significant large
number of other features currently never explored yet are
very likely useful in building highly accurate ozone pre-
diction model. Yet, little is known on exactly what these
features are and how they actually interact in the formation
of ozone. Information available is rather speculative in the
sense that we roughly know a rather exhaustive set of fea-
tures out there. Indeed, this candidate list contains over 60
features. As mentioned earlier, none of today’s environmen-
tal science knows as of yet how to use them. This provides
a wonderful opportunities for data mining. As discussed in
Section 1.3, the combination of rare class, large number of
possibly irrelevant features, small training set size, feature
selection bias, among others, is an interesting and challeng-
ing problem.

1.1 Seriousness of the Ozone Problem

Ground-level ozone O3, the key ingredients of smog, is
not emitted directly to the air like other air pollutants, but

Proceedings of the Sixth International Conference on Data Mining (ICDM'06)
0-7695-2701-9/06 $20.00  © 2006



is formed as a result of a series of complex chemical re-
action of VOCs (Volatile Organic Compounds) and NOx
(or Nitrogen Oxides) in the presence of heat and sunlight.
VOCs are emitted from a variety of sources, including mo-
tor vehicles, chemical plants, refineries, factories, and other
industrial sources. Nitrogen oxides are emitted from mo-
tor vehicles, power plants, and other combustion devices
such as off-road engines. Studies have shown that short
term up to a few hours exposure to elevated ambient ozone
can cause a number of health problems, such as asthma,
chest pain and coughing [2]. The effects of long-term expo-
sure is less established, although a few studies have associ-
ated long-term exposure to elevated ozone with decreases in
lung function, exacerbation of existing asthma and causing
new asthma [9]. Besides the effects on human health, ele-
vated ozone level also has negative effects on vegetation and
ecosystems, leading to reductions in agricultural and com-
mercial forest yields, and increases plant susceptibility to
disease, pests, and other environmental stresses. As part of
the mandate of Clean Air Act, United States Environmental
Protection Agency (EPA) established the National Ambient
Air Quality Standards (NAAQS) to regulate pollutants. In
July 1997, the EPA announced a new 8-hour 80 parts per
billion (ppb) standard as an amendment to the previous 1-
hour 120 ppb standard. The new standard is for the pro-
tection against longer exposure to the ground-level ozone.
The 8-hour ozone is the average of the ozone concentra-
tion of the past 8 hours. As a good case study, the Hous-
ton/Galveston/Brazoria (HGB) area of southeast Texas has
been experiencing some of the highest ozone levels recently
recorded in North America, outpacing Los Angeles as the
city with the most violation days in 1999 [6]. Recently, in
2004, the HGB area has a total of 52 days with measured
8-hour ozone reaching the 80 ppb dangerous level. Cur-
rently the HGB is designated as a non-attainment area by
EPA under the 8-hour ozone standard. As the fourth largest
city in the U.S., it is of great interest for Houston to achieve
an attainment status before the EPA deadline in 2010. In
the mean time, to monitor and forecast high ozone days be-
fore it actually happens remains the top priorities for Texas
Commission on Environmental Quality (TCEQ).

1.2 State-of-the Art in Ozone Forecasting

Ozone level forecasting has been an active area for envi-
ronmental science and meteorology. There are mainly two
family of methods, air dynamic and statistical models. The
dynamic forecasting uses 3-D air quality models to simu-
late the atmospheric processes that influence the formation,
transport and dispersion of ozone. The statistical methods,
on the other hand, find the empirical statistical correlation
between ozone and atmospheric parameters such as wind,
temperature, etc.

Two examples of dynamic models were used in the north
of Spain [14]. The first model uses three modules for
ozone forecasting. The mesoscale model (MASS) provides
the initial condition to the non-local boundary layer model
based on the transient turbulence scheme, while the third
module is a photochemical box model (OZIPR) in Eule-
rian and Lagrangian modes and receives necessary infor-
mation from the two previous modules. Quite different
from the first model, the second forecast model, called
MM5/UAM-V, is a grid model that predicts hourly 3D
ozone concentration field. Both methods give good per-
formance only for specific episode, but there is substantial
computational cost in constructing these models and they
are not portable to different locations, such as Houston. On
the other hand, statistical forecasting is currently the most
widely used method, primarily due to its low cost and com-
petitive accuracy compared with the dynamic forecasting.
Previously, various regression-based methods including re-
gression trees, parametric regression equation, and artificial
neural network (ANN), and others have been explored for
specific datasets at different locations. However, Schlink
et al [15] conducted an inter-model comparison on 15 sta-
tistical techniques which were applied to ten data sets rep-
resenting different meteorological and emission conditions
throughout Europe. They found that none of the 15 tech-
niques performs better than others in all aspects. Other non-
regression based statistical methods explored previously in-
clude fuzzy logic [8, 12], and Bayesian network [11].

1.3 Challenges as a Data Mining Problem

In environmental science, the true model for ozone days
are believed to be stochastic in nature. In other words, given
all relevant features in the feature vector xR, the probability
of an ozone day y = “ozone day” conditional on xR is non-
trivial. Formally, P (y = “ozone day”|xR) < 1 and can
be described as a density over xR. When the problem is
stochastic, predictive mistakes and errors are inevitable.

The dataset, described in detail in Section 2.1, contains
2500+ examples with 72 continuous features. Depending
on the criterion for ozone days, either 2% or 5% of them are
truly positive for the Houston area in the past 7 years. For
data mining, it is a rather skewed and relatively sparse distri-
bution. Small number of examples and large number of fea-
tures increase statistical bias and variance even if we know
the true stochastic model P (y|xR)’s exact form and use the
training data to estimate parameters inside the model.

In the same time, only about 10 features among these 72
features have been verified by environmental scientists to be
useful and relevant, and there is neither empirical nor theo-
retical information as of yet on the relevance of the other 60
features. However, air quality control scientists have been
speculating for a long time that some of these features might
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be useful, but just haven’t been able to either develop the
theory or use simulations to justify their relevance. Part of
our task is to test their possible relevancy using data mining
techniques. This ought to be pursued with caution though,
since the presence of a large number of features that are pos-
sibly irrelevant may seriously introduce overfitting problem.

By definition, the collected feature set x and relevant fea-
ture set xR may not be the same, but are expected to have
non-empty intercept xR ∩ x = xr, and xr �= ∅. For con-
venience, define xir as the set of irrelevant features inside
x, or formally, x = (xr,xir). Since xir is independent
from both y and xr, or formally, P (y,xir) = P (y)P (xir)
and P (xr,xir) = P (xr)P (xir), then P (y|x) is actually
P (y|xr). This is trivial since P (y|x) = P (y|xr,xir) =
P (y,xr,xir)
P (xr ,xir) = P (y,xr)P (xir)

P (xr)P (xir) = P (y|xr). However the
derivation P (y|x) = P (y|xr) is only true when the dataset
is exhaustive, and this is clearly not the case for 7 years of
ozone data. In effect, irrelevant features change the proba-
bility distribution represented in the data. For a normal day
training example (x, y = “normal day”), irrelevant features
tend to push the probability P (y = “ozone day”|x) down
towards 0. Considering those irrelevant features, there is
likely just one example with all these similar feature values
(both xr and xir) that is a normal day. On the other hand,
for ozone day example, irrelevant features are likely to push
up the probability to 1. Intuitively, as more irrelevant fea-
tures are introduced into the feature vector, the empirical
probability conditional on irrelevant features tends to get
closer to the two extreme cases, either 1 for ozone days or 0
for normal days.

On the other hand, the date of the ozone alarm cannot
be ignored, since an inductive model trained from historical
data will be used to predict ozone alarm in the future, and
the number of “ozone days” varies from year to year in the
Houston area. Considering the date, the problem can be for-
mulated as either a “data stream” or “sample selection bias”
problem. Evolving data stream is best described by changes
in joint probability distribution P (x, y) = P (y|x)P (x).
For ozone alarm forecasting, the physical law P (y|xR)
does not change over time, and as a result, neither P (y|x)
nor P (y|xr) is expected to change. Observable values of
P (y|x) may change, however, this is due to limited number
of labeled examples. Under evolving data stream frame-
work, the only possible change is in feature vector proba-
bility distribution P (x). In this sense, it is equivalent to
“feature sample selection bias” as described below.

The dataset can be equally formulated as a “sample se-
lection bias” problem [16]. Assume that s = 1 denotes that
an example (x, y) is sampled from the universe of exam-
ples into the training set, and s = 1 denotes that (x, y) is
not selected. Sample selection bias is best described by a
dependency of s = 1 on feature vector x and class label
y or P (s = 1|x, y). The sample selection bias is called a

“feature bias”, if it is explicitly dependent on feature vec-
tor x and conditionally independent from class label y or
P (s = 1|x, y) = P (s = 1|x). Ozone day forecasting is
an example of feature bias, since the training data set obvi-
ously is unlikely to contain too many “days” that are very
similar to the future. Where there is sample selection bias,
there are two closely-related challenges, 1) how to train an
accurate model given sample selection bias, and 2) how to
effectively use a model to predict the future with a different
and yet unknown distribution.

1.4 Our Contributions

Our work in this paper has made two main categories of
contributions, one is a solution for ozone alarm forecasting
that is more accurate than state of the art methods adopted
by TCEQ, and the other is the experience to formulate the
application as a data mining problem, analyze its unique
combinations of technical challenges, as well as the process
to search for the most suitable solutions. Besides the pro-
cess to find the satisfactory solutions, the most important
technical contributions are as follows:

• More accurate ozone forecasting system than current
system used by TCEQ.

• Empirically show the relevance of about 60 features
that environmental scientists have been speculating.

• How to estimate reliable probability from a data set
with a lot of possibly irrelevant features and very small
number of examples dataset.

• How to choose the best decision threshold to use a
model trained from historical data to predict on new
data under sample selection bias where neither feature
vector nor true label is known before hand.

2 Ozone Alarm Forecasting Problem

We start by describing how the Houston area data is col-
lected, the feature sets and ozone forecasting task.

2.1 Houston Area Dataset Collection

We collected various meteorology and ozone data for the
Houston, Galveston, and Brazoria (HGB) area. Seventy-
two data attributes are extracted from several databases
within two major federal data warehouse and one local
database for air quality control. These are EPA AQS (Air
Quality System) and NCDC (National Climate Data Cen-
ter) [13] from the federal government as well as CAMS
(Continuous Ambient Monitoring Stations) operated by
TCEQ. The EPA AQS database is the national repository for
information about airborne pollutants in the United States,
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and it provides the sensory information that is used in the
regulatory feedback. Ozone exceeding above the National
Air Quality Standard are based on the AQS data. The
NCDC is the world’s largest active archive of meteorolog-
ical data. In addition, the CAMS database archives some
detailed air parameters and local meteorological data not
available in the federal database. Since each database con-
tains many site stations, and there are several of these sta-
tions within the HGB area, we have chosen the informa-
tion collected either at or closest to IAH-Bush International
Airport for the study. This is because the weather sta-
tion at IAH is the only one that records a wide range of
hourly weather parameters in the HGB area. In addition, the
archived datasets at IAH have the longest recording history,
and usually the least missing value and erroneous readings.
In summary, these 72 attributes contains various measures
of air pollutant and meteorological information for the tar-
get area in our study.

Various air pollutant information from EPA AQS records
and measures several sources of VOCs that contribute to
the chemical reaction producing ozone in the target area.
In addition, the CAMS Air database archives some addi-
tional air pollutants information not available from EPS
AQS, and these include the amount of various air includ-
ing carbon monoxide (CO), nitrogen dioxide (NO2), sulfur
dioxide (SO2), nitric oxide (NOx), fine particular matters
(PM10 and PM2.5), oxides of nitrogen, and hydrogen sul-
fide. When the recorded value for the same measurement
is different between EPA AQS and CAMS, their average is
used in our studies.

Since the meteorology at both surface level and upper at-
mospheric level provides the physical condition that influ-
ences the formation, transport and dispersion of pollutants
that contribute to ozone, meteorological data from both lev-
els were obtained for modeling. NCDC Surface Airways
(SA) database contains surface data such as relative humid-
ity, ceiling height, sky cover, and etc. Other surface level
features such ground wind speed and direction, and tem-
perature, etc, are obtained from CAMS. For upper-air data,
NCDC Raodiosonde Data of North America dataset pro-
vides radiosonde observation (RAOB) record dated back to
1946. There are six RAOB stations in Texas. However,
we use the data from the RAOB station in Lake Charles,
Louisiana because it is the closest to Houston. Fifteen vari-
ables are extracted from RAOB, including temperature (T),
geopotential height (HT), dew point, wind speed and di-
rection at the 850, 700, and 500 hPa levels. The vari-
ables are sampled twice a day and the average is used in
the study. The wind speed and direction are converted to
U (east-west) component and V (south-north) component.
Additional variables that may affect the air quality include
previous day pollutant level (for carry over effect) and day
type (workday or non-workday, which affects NOX emis-

sions). In summary, seven (1998-2004) years hourly ozone
data, meteorological surface data and daily upper air mete-
orological data are collected in this study.

2.2 Current Forecasting System

Since 1999, TCEQ started to issue ozone warning for
public awareness for 9 metropolitan areas within Texas, in-
cluding the HGB area. TCEQ forecasts are primarily based
on the Criteria method [2]. It is an expert-rule-based sys-
tem developed over the years. Daily weather forecasts from
National Weather Service (NWS) are fed into the Criteria
model to predict if ozone levels will reach or exceed a target
level for a particular area. The criteria for the HGB area is
based on a rather small set of parameters, such as, previous
day ozone, maximum temperature and wind. The rules set
are different for each month in the forecast ozone seasons,
March to November for HGB area. In [10], researchers
at TCEQ proposed a parametric ozone prediction model,
called “local ozone peak model”, based on monitored wind
speed, temperature, and solar radiation, in conjunction with
monitored estimates of upwind background levels. In this
paper, we use the ozone peak model as base line since it is
the model currently promoted by TCEQ. This local ozone
peak model uses the upwind ozone background level (de-
fault as 50 [2]), the maximum temperature in degrees F, the
base temperature where net ozone production begins (50F),
the solar radiation total of the day, the wind speed near sun-
rise and midday. The emission factor can take values from
0 to 1. The following equation summarizes the parametric
equation and the parameters involved.

O3 = Upwind +
EmFactor × (Tmax − Tb)× SRd

WSa × 0.1 + WSp × 0.5 + 1
(1)

in which,

• O3 - Local ozone peak prediction

• Upwind - Upwind ozone background level

• EmFactor - Precursor emissions related factor

• Tmax - Maximum temperature in degrees F

• Tb - Base temperature where net ozone production be-
gins (50 F)

• SRd - Solar radiation total for the day

• WSa - Wind speed near sunrise (using 09-12 UTC
forecast mode)

• WSp - Wind speed mid-day (using 15-21 UTC fore-
cast mode)

3 Addressing Data Mining Challenges

We address those challenges as raised in Section 1.3.
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3.1 Direct Adaptations

Instead of predicting on class labels, it is well-known that
a more effective approach on skewed and stochastic distri-
bution is to directly estimate the probability distribution it-
self and then choose the best decision threshold to optimize
on some given criteria, such as a compromise between pre-
cision and recall.

In general, they are two families of methods, either de-
scriptive or generative, and sometimes called, nonparamet-
ric or parametric. Descriptive methods, such as decision
trees, make rather loose assumption about the form of the
true unknown probability distribution. Both the structure of
the hypothesis and parameters within the hypothesis are es-
timated from the labeled training data. On the other hand,
generative methods, such as naive Bayes and logistic regres-
sion, assume that the true conditional probability follows a
“particular form”. The formula is fixed and learning is to
estimate the parameters used inside the formula with Maxi-
mum Likelihood Estimation. Since little is known about the
true probability distribution of ozone days as a function of
the large number of features, it is hard to choose the right
generative methods, therefore descriptive methods are pre-
ferred.

3.2 Reliable Probability Estimation under
Irrelevant Features

As discussed in Section 1.3, the conditional probability
represented in the training data can be P (y|xr) at its best if
the dataset is exhaustively sampled. However, due to sam-
ple selection bias, it is in fact P (y|xr,xir , s = 1). As dis-
cussed earlier, the effect of irrelevant feature is to make the
probability towards 0 or 1 or either under-estimate or over
estimate.

One way to solve this problem is to train multiple mod-
els, each of which are from a random feature subset. In
other words, the model is built from xs

r ⊂ xr and xs
ir ⊂

xir. The effect to use a subset of xr can make the prob-
ability less “sharp” (or away from 0 or 1), and the effect
of xs

ir is to make the probability sharper, but could be ei-
ther in the correct or wrong directions. However, different
models trained from different feature subset is unlikely to
change the probability in the same direction unless these
features are correlated. Without any knowledge about what
features are relevant and which ones are not, the safest ap-
proach is to construct multiple models from different fea-
ture subset and average their predictions. This is because
on average, the multiple model will not perform worse than
any of the single models, an issue explained further below.
Yet, a separate way to look at this issue is that variance
in bias and variance decomposition can be reduced signifi-
cantly with model averaging. There are many ways to train

models from different feature subset. One of the simplest
and somehow less ad hoc approach is to train multiple deci-
sion trees in different ways. Since there are 72 features and
only 2500 examples, a decision path can at most test 12 fea-
tures (212 = 4096). Therefore, two different trees are very
unlikely to consider the same 12 features out of 72. As-
sume all trees are uncorrelated in choosing features. Then,
30 trees can guarantee that all 72 features will be considered
because (1 − 12

72 )30 � 0.004.
Since the dependency on the irrelevant features xir can-

not be ignored, every single model θ constructed from the
labeled training data is likely an inaccurate estimator of
P (y|xr). Let us denote the estimated probability by θ as
P (y|x, θ). We show that the expected error to estimate
P (y|xr) by averaging several models is no more than the
expected error of any single model being averaged. This
proof is adopted and modified from [1].

Formally,

MA(x) =
1
K

∑

k

P (y|x, θk) = EP (θ)(P (y|x, θ)) (2)

The MSE for a single model θk is simply the expected
difference between the true and estimated probabilities
squared.

Errorθk
= Σx,yP (x, y)(P (y|xr) − P (y|x, θk))2 (3)

= EP (x,y)[P (y|xr)2 − 2P (y|xr)P (y|x, θk) +

P (y|x, θk)2]

In the above equation, the sum over which joint dis-
tribution, either the unbiased joint distribution P (x, y) or
possibly biased distribution of the next year P (x, y, s =
near year), is insignificant. The expected MSE, if the model
is chosen at random from a model space Θ, is then the same
as Eq 3 except for there is an additional term P (θ) in the
expectation.

ErrorSingleModel = Σθk
Σx,yP (x, y) × (4)

(P (y|xr) − P (y|x, θk))2

= EP (θ),P (x,y)[P (y|xr)2 − 2P (y|xr)P (y|x, θk) +

P (y|x, θk)2]

If we were to take T models at random from the model
space and average their predictions then the expected per-
formance is

ErrMA = Σx,yP (x, y)(P (y|xr) − EP (θ)[P (y|x, θ)])2 (5)

= EP (x,y)[P (y|xr)2 − 2P (y|xr)EP (θ)[P (y|x, θ)] +

EP (θ)[P (y|x, θ)]2]

≤ EP (x,y)[P (y|xr)2 − 2P (y|xr)EP (θ)[P (y|x, θ)] +
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EP (θ)[P (y|x, θ)2]]

≤ ErrorSingleModelas E[f(x)]2 ≤ E[f(x)2]
(6)

Therefore, if were to perform many repeat experiments
comparing conditional probability averaging against a sin-
gle model, on average, conditional probability averaging
would perform no worse than a single model.

3.3 Predicting on the Future Data with
Feature Selection Bias

When there is feature sample selection bias and the test-
ing data is completely withheld from the training process,
in other words, both its feature vector values and class la-
bel are not known in advance1, the performance estimated
from the procedure described below is expected to be very
similar to its actual performance on the testing data.

1. Use 10-fold cross-validation on an algorithm to be
considered.

2. Concatenate the estimated probability values from 10
separate testing files into a single “probability-true la-
bel” file. Each entry in the file corresponds to one ex-
ample, and it includes the estimated probability using
10-fold CV and the true class label for that example.
In our case, an entry would look like (0.7891, “ozone
day”) or (0.2341, “normal day”) .

3. Plot either precision-recall or ROC plot by choos-
ing “unique” values of probabilities to be “decision
threshold” and applying the decision threshold on the
“probability-true label” file to compute a pair of pre-
cision and recall to be plotted. A straight-forward im-
plementation is as follows:

(a) sort the “probability-true label” file into one with
increasing estimated probability.

(b) choose each “unique” estimated probability as
“decision threshold”, one by one from the sorted
file. Let v be this chosen decision threshold.

(c) If the estimated probability for an example in the
probability-true label file is more than a threshold
v, predict it as an “ozone day”, otherwise, predict
it as a “normal day”. The choice of v is discussed
next.

(d) for the sorted “probability-true label” file, use ex-
amples with estimated probability equal to v be
as the “border line”. Then, every entry below this

1This is a different situation from [3]. In [3], the feature vector is known
but not the class label. In our case, neither the feature vector nor the class
label is known

borderline will be labeled as “normal day” and
every entry above and on this border line will be
labeled as “ozone day”.

(e) calculate the paired precision and recall cor-
responding to v, then plot recall and decision
threshold v on the x-axis, and resulting precision
on the y-axis. This can be either on the same plot
or two separate plots.

4. By reading from the precision-threshold plot obtained
above, choose a “decision threshold” vE that returns a
reasonable compromise between recall and precision.
Typically, when vE is high, precision is also high, but
recall is low. This is especially true for the ozone day
forecasting since the true model is stochastic. Assume
that as a result of vE , the recall and precision are v
and p. Ideally, there should be many adjacent points
with similar recall and precision values that are close
to v and p. As explained below, this can effectively
prevents “surprises”.

5. Train a new model θ using all available examples.

6. Use θ to classify the future days. To be specific, the
model predicts “ozone days” if the estimated proba-
bility by θ is more than vE . Formally, predict “ozone
day” if P (y = “ozone days”|x, θ) ≥ vE .

We next argue the above process will return reasonable
results for unseen future where neither feature vectors nor
their true labels are known in advance. First, the precision
recall plot is constructed by cross-validation, and is still ex-
pected to be a reasonable estimate on the future testing data
even under feature bias. Since neither the feature vector
nor the prior ozone day probability for the coming year is
known exactly, a better estimate would be quite hard to ob-
tain. The cross-validation process already implicitly takes
feature bias into account. Every test set in 10-fold cross-
validation contains a rather small number of examples con-
sidering that the problem contains 72 features and 2500+
total number of examples. In other words, every test set is
feature-biased, but just could be biased differently from the
days in the coming year. Nonetheless, when this process
is repeated 10 times in cross-validation, the precision-recall
plot is an average performance evaluated over 10 different
feature bias distributions. Unless the feature distribution of
the coming year is so different from the training data, such
as due to catastrophic weather, the precision-recall plot is
expected to a reasonable prediction for the coming year.

Each point or a precision-recall point, on the plot is es-
timated from cross-validation. When these points appear
rather continuous in the precision-recall plot, and not many
empty spaces in between adjacent points, the chance for sur-
prises when using model θ with decision threshold vE on
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the future days is little. The simple reason is that a contin-
uous plot has more “facts” instead of “speculations” than a
discontinuous or broken plot. One common held miscon-
ception about precision-recall curve as well as ROC plot is
that they are infinitely continuous. This is not the case in
reality. The simple understanding is that validation data is
limited in size and many learning techniques have limited
number of “unique” predictions. The line segment connect-
ing adjacent points in precision-recall plot (or ROC plot)
are not supported by any data. The connection is simply
made for a visual line effect. For a chosen vE as described
above, if its adjacent precision-recall points are rather far
away from vE on the plot, it increases the chance of per-
formance difference on future days. For the future year’s
data, both the recall and precision given decision threshold
vE are unlikely exactly the same as r and p, as one would
otherwise read from the plot. For reassurance, it is prefer-
able to have an idea on the approximate value if the esti-
mate is indeed off. Obviously, a continuous precision-recall
plot can provide this information. On the contrary, for a
broken or discontinuous plot, one could only speculate and
assume that the “visual lines” are close to reality. For this
reason, when choosing vE , one should also consider adja-
cent points. When two algorithms construct similar shaped
precision-recall plot, one should prefer the algorithm with a
more “continuous” plot for the same reason.

4 Probabilistic Tree Models

The probabilistic decision tree models are suitable for
the skewed ozone modeling and forecasting because they
output “semi-continuous” probabilities and a decision-
threshold can be chosen to find the most satisfactory com-
promise between recall and precision. There are two types
of probability estimation trees - a single tree estimator and
an ensemble of trees. Obviously, the single tree is better for
comprehensibility. However, it only approximates the true
unknown model from one particular model representation
and may not have high accuracy. The ensemble is preferred
when accurate probability estimation is desired. c4.5 and
c4.4 [7] are representatives of single tree, bagging trees and
random decision tree [4] are examples of tree ensembles. It
is important to point out that bagging trees in our study aver-
age over posterior probability, but seminal work on bagging
uses voting of class labels.

c4.4 A straightforward method to estimate class mem-
bership probability is to use the class frequency at the cor-
responding leaf. In our case, this is achieved by dividing the
number of high ozone days by total number of days from the
training data that are sorted into the classifying leaf node. It
has been noted [7] that frequency-based estimates of class-
membership probability are not always accurate and statis-
tically reliable. One reason is that the tree-growing algo-

rithm searches for pure leaves, and tends to produce unre-
alistically high probability estimates, especially when the
leaves cover few training examples. These estimates can be
smoothed to mitigate these problems. As one of the sim-
plest forms of smoothing, Laplace correction incorporates
an equal prior for each class. Various experiments have
showed that smoothing techniques can generally improve
performance [7, 5]. Importantly, Provost et al [7] pointed
out that many heuristics for improving classification accu-
racy and minimizing tree size actually are biased “against”
estimating accurate probabilities. For example, pruning via
error reduction is blamed as the culprit. In summary, c4.4 is
a variation of c4.5 by replacing frequency estimation with
Laplace correction and turning off pruning and collapsing.

Random Decision Trees Random decision tree [4] is an
ensemble of individual trees, each of which is constructed
“randomly”. To build each tree, a feature is randomly se-
lected from remaining features on which the data is split
on. Along a decision path, a discrete feature can be selected
only once; however, continuous features can be used multi-
ple times, but each time with a different, randomly chosen
splitting value. Features from the training data are used to
construct tree structures, and the data values themselves are
used to update the class probabilities recorded in the leaf
nodes. For a testing example, each tree produces a class
probability. Probabilities from all the trees in the ensemble
are averaged to generate the overall class probability esti-
mate. Normally, thirty trees is sufficient, and up to fifty
trees may be necessary when the distribution is skewed. On
average, the depth of a random tree is about half of the num-
ber of the features, whereby distinct features are most likely
to be selected to maximize diversity for the ensemble.

5 Experimental Studies

Probabilistic decision trees are inductive methods that
are constructed from labeled training examples and are af-
fected by both sample selection bias (feature bias in our
case) and amount of training data. However, parametric
model used by TCEQ is not trained, but simply calculates
the ozone level using some features for the day and is there-
fore not affected by either sample selection bias or amount
of training data. Given these differences, both “exhaus-
tive” cross-validation tests that ignore the time stamp of the
data (therefore alleviating problem of sample selection bias
and number of training examples), and incremental tests
that build models from previous years and test on subse-
quent years are necessary. In particular, cross-validation
tests are important from algorithmic point of view, since it
will demonstrate the levels of accuracy that can be achieved
when there are reasonable number of training examples and
not really biased. On the other hand, incremental tests can
help reveal the limit of each algorithm when the number of
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Eight Hour
baggingc4.4 bagginc4.5 rdf rdh
0.4752715 0.4770881 0.4526162 0.494517

c4.4 c4.5prune c4.5unprune parametric
0.3156655 0.2704359 0.2577432 0.3005114

One Hour
baggingc4.4 bagginc4.5 rdf rdh
0.2621395 0.2543787 0.2378948 0.2232675

c4.4 c4.5unprune c4.5prune parametric
0.1996664 0.1226400 0.1202133 0.2520145

Table 1. Precision-Recall Coverage CV=10

examples are smaller and, most important of all, simulate
the actual deployment of each method in practice.

5.1 Cross-validation Experiments

In 10-fold cross-validation experiments, the time stamp
of each day is omitted, and the 7 years worth of ozone data
is completely shuffled prior to generating training and test-
ing pairs. Seven decision tree algorithms are applied on
the data for both 1-hr and 8-hr peak detection. These in-
clude baggingc4.5, baggingc4.4, random decision tree with
half depth rdh, and full depth rdf, c4.4 as well as c4.5 with
and without pruning. Each tree model computes a posterior
probability P (y = “ozone day”|x, θ). This notation explic-
itly specifies its dependency on the feature vector x for each
day as well as some decision tree model θ. It is important
to understand that the dependency on θ cannot be ignored
since each model estimates probability based on its trained
model M and it may not be the true probability P (y =
“ozone day”|x). We choose a subjective decision thresh-
old vE , and whenever P (y = “ozone day”|x, θ) ≥ vE , we
issue an alert. Obviously, with different values of vE , differ-
ent recall and precision will result. Normally with decreas-
ing vE , recall increases but precision tends to decrease. We
say that model θa is preferred over θb, if the precision of
θa is consistently higher than θb under the same recall num-
bers. It is important to observe how the recall and precision
are correlated for each chosen algorithm. The resulting re-
call and precision results are plotted in a “recall-precision”
chart with x-axis as the recall and y-axis as the precision.
This is similar to ROC, but is more straightforward for me-
teorologists.

Each probabilistic decision tree algorithm does not
generate exactly “continuous” probabilities, but “semi-
continuous” estimates. For example, the number of
“unique” probabilities generated by c4.4 and c4.5 cannot
be more than the number of leaf nodes. For bagging and
random decision trees, the number of unique probabilities
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Figure 1. Eight Hour Ozone Alert Prediction

cannot be more than the multiple of leaf nodes of all trees
in the ensemble. In reality, each tree is correlated in cer-
tain degree, the actual number on a given test set is ex-
pected to be smaller than this upper bound. In order to
compute an exhaustive recall-precision plot, we choose the
unique probabilities (as a result of a model tested on the
test set) as the decision thresholds. The results by concate-
nating 10 folds together are shown in Figures 1 and 2. For
both eight hour and one hour forecast, we present the re-
sults in full recall range, between 0.4 and 0.6 where both
the recall and precision numbers are useful to cover most
alerts with decent number of false alarms, as well as the
unique decision thresholds for each decision tree. The scale
on precision or y-axis is adjusted accordingly to empha-
size the difference in results among different models. In
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Figure 2. One Hour Ozone Alert Prediction

all four plots, the baseline “parametric” model is the “dark-
est” curve. Clearly, the precision obtained by the ensemble
approaches (baggingc4.5,baggingc4.4, rdh, and rdf) for the
same recall numbers are nearly all higher than the baseline
parametric approach, and consistently higher in the useful
critical recall range of [0.4, 0.6], for both one hour standard
and eight hour standard. Importantly, the higher precision
obtained by trees are particularly obvious for the newly en-
acted eight hour long duration standard. As shown in Fig-
ure 1, each of the four ensemble methods has achieved twice
as much precision as the parametric model, and single tree
method c4.4 has obtained higher precision for recall range
[0.4,0.6]. The difference among ensemble methods appears
to be “twisted” and insignificant in the full recall range.
In the critical range, rdh and baggingc4.4 appear to have

achieved slightly higher precision than the other methods.
For the one hour exposure standard, as shown in Figure 2, in
decreasing order of precision for recall range [0.4,0.6], the
top performers are approximately, bagging4.4, baggingc4.5,
rdh, rdf, followed by the parametric model. In addition,
as a summary of each curve in the precision-recall curve,
we measure the “coverage” area or integration under each
curve, similar to AUC in ROC, as a single number to com-
pare different models. The normalized area for each model-
ing technique over the full range is summarized in Table 1.
Since a high coverage implies better performance, the or-
der of performance among different models is in consensus
with the visual observation.

As shown in both Figure 1 and 2, the decision thresholds
for the three single tree methods, c4.5prune, c4.5unprune,
and c4.4, all exhibit an s-shape, and are either quite high
(close to 1.0) or quite low (close to 0.0). This is due to
the fact that single trees tends to construct pure nodes that
are mostly ozone days or normal days. It appears that the
Laplace correction employed by c4.5 can make the curve
“flatter”, but it is limited. The decision thresholds of ran-
dom decision trees are consistently lower than bagging, and
this is due to bagging’s use of information gain to choose
feature which results in “purer” nodes than random trees.

5.2 Incremental Study

Incremental study is necessary, since in reality, the
dataset is not collected all at once, but on a day-by-day ba-
sis. We have chosen three algorithms for this study, bag-
gingc4.4, random decision tree with half depth, and c4.4, as
they are the best performers for ensemble methods or single
trees in the cross-validation tests.

Month by Month Exhaustive Test In a month-by-
month test, we incrementally include the previous month’s
data to train a new model in order to make predictions for
the coming month. We start with the whole year’s data
in 1998, the incremental tests start on January 1999, and
terminates in December 2004. For each test (one hour
or eight hour), there is a total of 72 of training and test
pairs. To compare with cross-validation results, we concate-
nate the estimated probabilities from 72 tests into a single
file, choose unique probability values as decision thresh-
olds to plot recall-precision curves for recall range [0.4,0.6]
and its corresponding coverage measurement, as shown
in Figure 3. Comparing with exhaustive cross-validation
tests, Figure 1 and 2, the parametric model’s performance
is very similar but not the same, since it is not tested on
the first year’s data. The performance of baggingc4.5 and
rdh is slightly worse than the exhaustive cross-validation
tests since the training sets are significantly smaller, i.e.,
incrementally from 12 months to 83 months, as compared
to fixed training data of 84

10 × 9 = 75.6 months. How-
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Eight Hour
baggingc4.4 rdh c4.4 parametric
0.07855827 0.08051929 0.04499622 0.06069186

One Hour
baggingc4.4 rdh c4.4 parametric
0.0505797 0.0408344 0.02170039 0.04158795

Figure 3. Monthly Test Precision-Recall Plot and Coverage for Eight hour (left) and One hour (right)
with recall=[0.4,0.6]

ever, they are still significantly better than the parametric
model as summarized by the coverage measures in Fig-
ure 3. To be specific, for eight hour test, rdh and bag-
gingc4.4 achieve precision level 10% to 20% higher than
the parametric model for different recall values. For the
one hour test, baggingc4.4’s precision is consistently about
5% higher, but rdh and parametric model are very similar
in precision. Compared with the two ensemble approaches,
c4.4’s performance appears to be significantly worse than
the exhaustive test, and consistently worse than the paramet-
ric model used by TCEQ. The reason is that single decision
tree methods are sensitive to the amount of training data.
When the amount is less, single tree’s error due to vari-
ance increment becomes quite large. However, ensemble
methods like bagging and rdt can effectively reduce vari-
ance even if the training set size is small. This has been
recently demonstrated in [17].

Annual Test The annual incremental test simulates the
realistic scenario that meteorologists would use the proba-
bilistic model. The reason is that the number of ozone days
per year for both 1-hr and 8-hr peak is rather skewed and
mostly accumulated during the summer months. Incremen-
tal learning “finer” than one year increment is unlikely to
include meaningful number of examples that could other-
wise improve the model trained previously. For annual in-
cremental learning, we start by building models from 1998’s
data to predict on 1999, incrementally assimilate the previ-
ous year’s data and reconstruct the model to predict on the
coming year, till 2004, for a total of 6 pairs of tests.

Like parametric model, we need to “fix a decision thresh-
old” to make prediction on a daily basis. The threshold for
the parametric model used by meteorologist is 120 for 1-
hr peak and 80 for 8-hr peak, and the resulting recall is
between 40% and 60%. We are interested in estimating a

decision threshold for each algorithm to obtain similar lev-
els of recall, and then comparing the resulting precisions
(the higher the better). For this reason, 10-fold cross vali-
dation is applied on the “annual” training set to determine
the thresholds used for the next year. Three thresholds are
selected for this purpose, and they are the decision thresh-
olds for recall=0.4, recall=0.6, and the average of these two
thresholds. For example, on December 31, 2000, the train-
ing data contains 1998, 1999 and 2000. In order to de-
cide the decision threshold for the year 2001, we use 10-
fold cross validation on the training data of 1998, 1999 and
2000. We concatenate all 10 result files generated from
cross-validation together, and respectively find out the de-
cision threshold for recall to be 0.4, 0.6 and the average of
these two thresholds. This procedure is repeated for each of
the three chosen decision tree algorithms, and a different set
of decision thresholds is selected for each model. We then
use the respective model with the chosen thresholds to pre-
dict the year 2001, and report the corresponding precision
and recall. Since the collected data is from 1998 to 2004,
this procedure is repeated 6 times. The results are averaged
for 6 years in Table 2. The “threshold” for decision trees is
marked under “0.40”, ”0.60” and “avg”. These are not the
actual threshold chosen for each method. It just indicates
the thresholds chosen from cross-validation to obtain recall
to be 0.4, 0.6 and the average of these two thresholds. We
bold-font a result if both of recall and precision are higher
or rather close to the parametric model. The advantages of
bagginc4.4 and rdh over the parametric model are obvious.
For the eight hour alert, comparing rdh (recall=0.608, pre-
cision=0.323) and parametric (recall=0.568 and precision =
0.227), assuming that each year has about 25 8-hr ozone
alert days, the result means that rdt can correctly detect 1
more day but issue 15 days fewer false alarms. For meteo-
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Eight Hour Annual
baggingc4.4 rdh c4.4 parametric

threshold .40 .60 avg .40 .60 avg .40 .60 avg 80
Recall 0.308 0.554 0.429 0.384 0.608 0.488 0.378 0.514 0.382 0.568

Precision 0.425 0.348 0.416 0.350 0.323 0.358 0.199 0.162 0.183 0.227
One Hour Annual

baggingc4.4 rdh c4.4 parametric

threshold .40 .60 avg .40 .60 avg .40 .60 avg 120
Recall 0.382 0.692 0.522 0.392 0.545 0.501 0.316 0.540 0.340 0.476

Precision 0.197 0.155 0.185 0.174 0.121 0.154 0.125 0.115 0.110 0.158

Table 2. Incremental Annual Test for Eight Hour and One Hour

Eight Hour Annual Ozone Month Only
baggingc4.4 rdh c4.4 parametric

.70 .80 avg .70 .80 avg .70 .80 avg 80
Recall 0.654 0.728 0.696 0.662 0.770 0.718 0.689 0.762 0.695 0.568

Precision 0.329 0.270 0.293 0.301 0.246 0.271 0.173 0.157 0.168 0.237

Table 3. Ozone Month Annual Test Eight Hour Forecast

rologist, this is significant.

Ozone Month Only Annual Test One important obser-
vation is that high ozone days only happen during warm
days and never occur during winter time. For this reason,
it is a reasonable conjecture that those months without any
ozone days are unlikely to help to construct a model to de-
tect ozone days for summer months. We design “an ozone
month only annual test’. The difference from the previously
described annual test is that we only use the previous years’
“ozone month” data to make predictions for current year’s
ozone month data. We define ozone month as the month
which includes at least a day whose ozone level is higher
than 80 for 8-hr peak and 120 for 1-hr peak. The total num-
ber of months of out 12×7= 84 months has 46 months with
8-hour peak and 33 months with 1-hour peak. When the
percentage of ozone days increases or the percentage of pos-
itives increases, it becomes a slight different problem. As a
result, the decision tree algorithms construct “conceptually”
different models as compared to previous experiments, and
the recall/precision as a function of decision threshold over
different models also changes. Using cross-validation test,
we have found that with recall between 0.7 and 0.8, the pre-
cision by decision trees are still higher than the parametric
model for the same year. For this reason, in the ozone month
annual test, the decision threshold chosen for the next year
are the ones that obtain recall=0.7, 0.8, and the average of
the two thresholds. The result is shown in Table 3. It is im-
portant to understand that the recall for parametric model
(not the tree model) is the same as previous annual test,

however the precision is slightly higher. This is because the
none-ozone months have been taken out. In Table 3, when
the decision tree’s methods achieve both higher recall and
higher precision, the results are highlighted in bold-fonts.
Obviously, for each choice of decision thresholds, both bag-
gingc4.4 and rdt have achieved 10% to 20% higher recall
with up to 10% higher precision.

6 Results on Some Other Learners

There are some belief that ozone level is not completely
i.i.d from day to day. In other words, the ozone level of
previous days in some ways may decide the ozone level of
the following days. However, there is no clear consensus as
of yet on how this should be modeled effectively. We have
experimented a naive approach to take this into account for
inductive learning. For each decision tree, instead of using
cross-validation to estimate the optimal decision threshold
for the next year, we find this out somehow “dynamically”
as follows: set the initial decision threshold as 0.5, then pre-
dict on the first day of the year. If the prediction is correct,
keep the threshold and predict on the next day, otherwise
adjust the threshold to make the prediction correct. How-
ever the mistakes are always counted. Our experiments for
both annual and ozone month only annual tests have shown
that both recall and precision appear to be less. Another
possibility is to include the previous day’s ozone alert as
a feature. However, this will make the trees incompatible
with the parametric model. In addition, we also have exper-
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imented with AdaBoost using unpruned c4.5 as the weak
learner. With the same 10-fold tests used for Figure 1 and
2, boostedc4.5 achieved recall=0.231 and precision=0.4793
for eight hour, and recall=0.111 and precision=0.293 for
one hour. If we had plotted these in the same figures, it
could have fallen within curves of the single decision trees.

7 Conclusion

Our work provides a data mining based solution to fore-
cast ozone days for the Houston area, that is more accurate
(20% higher recall and 10% higher precision) than existing
method adopted by Texas Commission on Environmental
Quality, as well as experiences and methods to solve prob-
lems with similar characteristics.

On the practical side, ozone level forecast is one of the
most important and difficult problems for air quality con-
trol. It is well established that ozone level above certain
threshold is dangerous for human health and inadversely af-
fects other parts of our daily life. Traditional approaches to
forecast ozone alert relies on “air dynamics” that simulates
the physical and chemical process that generate ozone. It
is well known that these methods consume high compu-
tational power and the solution is not portable from one
scenario to another. In the same time, the prediction ac-
curacy is still far from being desirable. On the other hand,
regression-based methods (regression trees, neural network
and parametric regression) have shown limited success to
forecast ozone level. To the best of our knowledge, this
paper is the first attempt that use inductive learning tech-
nique to issue ozone level alert. Our choice learners are
probabilistic decision trees and the base line comparison is
a parametric model developed by experts in ozone level pre-
diction. Using seven recent years of data, rather exhaustive
cross-validation experiments as well as incremental exper-
iments, we have demonstrated that inductive learning can
significantly improve an expert-based parametric model. In
particular, in the annual incremental test, baggingc4.4 and
random decision tree can achieve 10% to 20% higher re-
call and up to 10% higher precision than the parametric
model. Though our choice of inductive learners are non-
exhaustive, this paper has shown that inductive learning
can be a method of choice for ozone level forecast, and
ensemble-based probability trees provide better forecasts
(higher recall and precision) than existing approaches.

For data mining research, besides the procedure to ana-
lyze and formulate the problem and look for the most appro-
priate modeling technique, we have shown that in general,
model averaging of posterior probability estimators trained
from random subset of feature vectors can effectively ap-
proximate the true probability when there are 1) a lot of
irrelevant features and 2) feature sample selection bias. For
stochastic problems under sample selection bias, we have

provided a cross-validation based procedure and guide on
how to choose the most appropriate decision threshold as a
compromise between precision and recall, and in the same
time, avoid “surprises” when applied on biased testing data
where neither the feature vector nor the prior class distribu-
tion is known.
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